Structure and Dynamics of a pinned vortex liquid in ultrathin superconducting films

Pratap Raychaudhuri Tata Institute of Fundamental Research, Mumbai

Theory Collaborator: Chandan Dasgupta

The vortex lattice: An archetypal crystalline system

The vortex lattice in a NbSe₂ single crystal

- One would expect the vortex lattice to melt at a characteristic temperature or magnetic field.
- Yet vortex liquid states are rare.
- In conventional bulk superconductors thermal fluctuations alone is not enough to melt the vortex lattice. Exception: High T_c cuprates.

Where can one observe vortex liquid? How is it different from regular liquids?

How to image the vortex lattice using STM?

Normal core

 $G(V_{dc}) = I_{ac}/V_{ac}$

Our Toy: The TIFR milli-Kelvin Scanning Tunneling Microscope

Review of Scientific Instruments 84, 123905 (2013).

Sample manipulator Vacuum Suitcase **Pulsed Laser Deposition** Chamber **Battery operated** ion pump STM load-lock

Pinning induced amorphization: bulk NbSe₂

Scientific Reports 5, 10613 (2015); Phys. Rev. B 93, 144503 (2016).

Evidence of vortex liquid: *a*-MoGe thin film

Very Weak pinning

Thickness: 20 nm

Real space evolution of the vortex lattice

Looking at the Dynamics

Solid to liquid transition in transport

Solid to liquid transition: Marked by Extreme sensitivity

Dichotomy between transport and STS measurements

- STS is a slow measurement. Each image is acquired over 15-30 minutes and the conductance at each pixel is integrated over several msec.
- If individual vortices can be seen using STS then their diffusivity is too small to give any measurable resistance.
- If one observes a finite resistance, the vortices have to move very fast and one would observe an uniform average response everywhere.

The enigma of a-Re_xZr

Journal of Alloys and Compounds 877, 160258 (2021)

5 nm thick a-Re_xZr thin film

NbSe₂ single crystal: 400 mK, 10 kOe

410 mK, 10 kOe

STS measurement in a pinned vortex liquid

In the presence of pinning...

Vortices will spend longer time close to the pinning centres.

The locations will show a minima in G(V) but the depth of the minima will be shallower than the one corresponding to a static vortex at that location.

The depth of the minima is a metric of the probability of finding a vortex at that location.

Diffusive motion of vortices will happen through hops between these preferential sites.

If some vortex is completely localised at some pinning site that location will display a deep minimum.

Vortices with different degree of localisation

Deep minima corresponding to strongly localized vortices

Shallow minima corresponding to weakly localized vortices

Finding Motion Paths

Join any two neighbouring minima for which,

(i) The value of $G_N > -0.8$

and

(ii) The value of G_N along the line joining the minima is < -0.4

Not the complete story...

-0.5

Why this change?

- The preferred sites are determined by a combination of pinning potential and the confining potential created by neighbouring vortices.
- Some vortices get trapped in an in an intermediate pinning center while hopping between two minima: **Incomplete hops.**

Relationship between Structure and Dynamics

 $\langle G_N^{lmin}(V) \rangle$: average intensity of the minima f : fraction of vortices on movement network

nm

Sum of all 10 images

100 200 300 400 nm

How to construct the global motion network?

Superpose all **Blue paths**

Connecting the **incomplete hops**

(Sum of Complete hops)

(Connecting minima that are closer than $0.5a_{H}$)

1

2

3

4

5

6

• 7

8

• 9

•

10

Overall Motion paths: **Red Network + Blue Network**

Magnetic field evolution of network paths

 f_{G} – fraction of vortices that are on the motion path.

No Signature of a Glass transition!

10 kOe : Temperature Evolution

nm

nm

1 kOe, 410 mK : No complete hops

Understanding transport peculiarity

Conclusions

- We have shown the formation of a inhomogeneous "pinned" vortex liquid in 5 nm thick a-Re_xZr thin film through STS and transport measurement.
- The movement of vortices in this liquid is through a network of percolating tracks.
- Our analysis resolves the dichotomy between transport and STS measurements to visualise pinned vortex liquid.

$$\Delta a = \left(\frac{h}{m\omega}\right)^{1/2} = \frac{h^{1/2}}{(km)^{1/4}}$$

Inside the vortex core

<u>Clean limit</u>

• Peak (more than unity) is observed at the zero bias conductance due to formation of bound state by the normal electrons, Known as Caroli-de Gennes-Matricon state.

Caroli-de Gennes-Matricon peak

Inside the vortex core

Dirty limit

Sample: Co doped Nbse₂ (J. Phys.: Con. Mat. 28 (2016) 165701)

2

3

-3

-2

-1 0 1

V (mV)

Sample: 2H-Nb_{1-x} Ta_xSe₂ (ref: Phys. Rev. Lett. 67, 1650 (1991))

- No peak is observed inside the vortex core in the dirty limit
- *a*-MoGe is even more dirtier sample ($l \sim 1.42$ Å and $\frac{\Delta_0 \tau}{h} = 0.069 \ll 1$)

Unusual Results: Soft gap inside the vortex core in MoGe thin film(T=450

Spatial variation of normalized Zero bias conductance $(G_N(0))$

Homogeneous superconducting state

Proposed Explanation: Fast vibration of vortices

Amplitude & frequency of the vibration

• Our obtained form of amplitude (for zero-point motion) is very similar (expect 0.6 pre-factor), given in ref: Annals of Physics 321, 1528 (2006)

Strategy to find $\Delta a/a$ from our experimental results

Step1: Simulation of single static vortex

Assumptions:

- Spectra inside the vortex core is flat (position A)
- Spectra far away from the core follows BCS nature (position B)
- Spectra, G (r, V) varies across the boundary as gaussian nature,

$$w(r) = \sqrt{\frac{\beta}{\pi}} \exp[-\beta r^2]$$

We fix,
$$\beta = \frac{4\log(2)}{(FWHM)^2}$$
; $FWHM \sim 2\xi_{GL}$

Conductance map for single vortex,

$$G_N(r,V) = \left(\frac{w(r)}{w_{max}(r)}\right) * G_N^{core} + \left[1 - \left(\frac{w(r)}{w_{max}(r)}\right)\right] G_N^{BCS}$$

Step 2: Simulation of full conductance map for static vortex lattice

$$G_{N}^{St}(V,r) = \frac{\sum_{i} G_{N}(r-r_{i},V)}{[\sum_{i} G_{N}(r-r_{i},V=0)]_{max}}$$

$$H=10 \text{ kOe} \qquad G_{N}^{st}(0) \qquad 0.8 \qquad 0.6 \qquad 0.6 \qquad 0.4 \qquad 0.2 \qquad 0.4 \qquad 0$$

Consistency check: static vortex lattice simulation

Position B

V (mV)

20

40

nm

60

-3

• The value of FWHM is used for the fitting matches exactly with the coherence length value, obtained from upper critical field.

Step 3: Simulation for the random vibration (Born-Oppenheimer Approximation: Retardation Neglected)

Average

Time Snap: 1

Time Snap: 200

$$G_N^s(0, r, 0. 1a_0)$$

• Vortex position, $\vec{r}_i \rightarrow \vec{r}_i + \delta \vec{r}$

 $0 \leq \delta \vec{r} \leq \Delta a$ (amplitude of the vibration)

- We perform the simulation over such 200 realizations
- Grand average normalized conductance map,

$$G_N^s(V,r,\Delta a) = \frac{1}{200} \sum_{K=1}^{200} G_N^{st,k}(V,r,\Delta a) = \langle G_N^{st}(V,r,\Delta a) \rangle$$

Step 4: comparing with experimental results (a-MoGe thin films)

• We take $\Delta a/a_0$ and Γ as the fitting parameters.

<u>Conclusion: Quantum zero-point motion</u>

- Two dips appear in the field variation of $\Delta a/a_0$ close to the phase boundaries: vortex solid- hexatic fluid and hexatic fluid to isotropic liquid. These anomalies most likely due to the anharmonicity of the confining potential.
- The magnetic field variation of $\Delta a/a_0$ matches well with the field dependent form, expected from Quantum zero-point motion of vortices.

Calculation of vortex mass

1. From fitting parameters, $m_{v} = \left(\frac{\hbar}{1.075}\right)^{2} \frac{1}{K_{0} \phi_{0} A^{4}} \approx 36m_{e}$

2. From carrier density,

$$m_v = \frac{2}{\pi^3} m_e K_F d = \frac{2}{\pi^3} m_e (3\pi^2 n)^{1/3} d \approx 32m_e$$

The superconductor – bad metal transition

Yazdani and Kapitulnik- PRL 74, 3037 (1995)

Superconductor below B_c

Bad metal above B_c

 $\frac{dR}{dT} < 0$ but $G(T \to 0)$ is finite

Is this bad metal also made of Cooper pairs that are in a dissipative state?

Surajit Dutta John Jesudasan

Phys. Rev. B 105, L140503 (2022)

The Critical Field: H_c

$$R_{s}(H,T) = R_{c}^{*} f\left(C_{a} \frac{|H-H_{c}^{*}|}{T^{\frac{1}{zv}}}\right)$$

$$\frac{dR}{dH}\Big|_{H=H_c^*} \propto R_c^* T^{-\frac{1}{\nu z}} f'(0)$$

Bad Metal Above 36 kOe

Melting of the Vortex Lattice

Vortex liquid above 3 kOe

H=1kOe

450 mK

Evolution with magnetic field

Bad metal above 36 kOe

Vortex liquid above 3 kOe

Do Cooper pairs survive in the bad metal?

Fitting Tunnelling Spectra

2 nm thick MoGe Thick MoGe (20 nm): BCS superconductor (a) (a) 0.45 K G (10⁻⁸ S) 0.9 K 0.8 1.6 K 2.1 K 0.4 х U $G_N(0)^U$ 2.6 K 2.9 K 0.45K 3.75 K 0.6 100 (IIII) 0.97K 45 K 3.7 K 1.55 K 5.30 K 3 4.8 K 2.1K 6.60 K 0.4 7.1 K 100 50 10 K x (nm) 2.65K 7.60 K -2 -4 0 2 -2 V (mV) V(mV) Coherence peaks broadened and Large zero bias conductance $\Gamma^D \approx 0$ $\Gamma^D \neq 0$ BCS + Dynes DOS A broad V-shaped background coming from diffusive e-e Coulomb interactions: $N_s^{BCS}(E) = \left| Re \left\{ \frac{E - i\Gamma^D}{\sqrt{(E - i\Gamma^D)^2 - \Lambda^2}} \right\} \right|$ Altshuler-Aronov anomaly $N(E) = N_s^{BCS}(E) N_N^{AA}(\Omega)$ $G(V,T) = G_0 \int_{-\infty}^{\infty} dE \frac{1}{kT} \frac{e^{\frac{E+eV}{kT}}}{\left(1 + e^{\frac{E+eV}{kT}}\right)^2} N(E)$ $\boldsymbol{\Omega} = \boldsymbol{R}\boldsymbol{e}\left[\sqrt{(\boldsymbol{E}-\boldsymbol{i}\boldsymbol{\Gamma}^{\boldsymbol{D}})^2-\Delta^2}\right]$

Zero field Δ and R_s with temperature

Evolution of tunnelling spectra with magnetic field

Phase Diagram

What is the **Bose Metal**?

Conjecture

Zero point fluctuation of vortices would be much larger for 2nm thick sample

The transition at H_c is from a classical vortex fluid to a quantum vortex fluid

H (kOe)

Surajit Dutta et al, Phys. Rev B 103, 214512 (2021)

Inside the vortex core

Dirty limit

Sample: Co doped NbSe₂ (J. Phys.: Con. Mat. 28 (2016) 165701)

Sample: 2H-Nb_{1-x} Ta_xSe₂ (ref: Phys. Rev. Lett. 67, 1650 (1991))

- No peak is observed inside the vortex core in the dirty limit
- *a*-MoGe is even more dirtier sample ($l \sim 1.42$ Å and $\frac{\Delta_0 \tau}{\hbar} = 0.069 \ll 1$)

Unusual Results: Soft gap inside the vortex core in MoGe thin film(T=450

Extreme sensitivity in the vortex state

Frequency dependence

Phys. Rev. B 100, 214518 (2019)

<u>Summary</u>

- We have shown that quantum zero point motion of the vortex core can give rise to a soft gap at the centre of the vortex.
- Whether the zero-point fluctuation can produce a quantum vortex fluid at T
 → 0 is a question that is yet to be investigated.

(Strong) Disorder in conventional superconductors The effect of disorder on J ($\propto n_s$)

NbN film $T_c \sim 16 \text{ K}$

n_s/n ~ 0.001

$$\int_{0}^{\infty} \frac{\pi m \Delta n e^{2}}{\delta \omega} = \frac{\pi m \Delta n e^{2}}{\delta \omega}$$

Role of Spatial Amplitude Fluctuations in Highly Disordered s-Wave Superconductors

Disorder in superconductors

Anderson theorem: As long as the system remains fairly large, no amount of scattering which leaves the substance a metal, would be capable of actually destroying superconductivity.

However, since the pairing interaction is not strongly dependent on the direction of k, the binding energy of the Copper pair, Δ will not significantly change.

T_c is not affected by disorder

Ma and Lee: The substance will remain a superconductor even when it becomes an Anderson insulator, as long as the localization length of the electrons, L, is larger than the coherence length, ξ .

(Strong) Disorder in conventional superconductors

Finkelstein, Anderson-Muttalib-Ramakrishnan

- Coulomb interaction between electrons no longer effectively screened.
- The Coulomb repulsion partially cancels the electron-phonon attractive interaction.

Characterization of pinning strength

No hysteresis between Field cooled (FC) & zero field cooled (ZFC)