Reconsidering qubit control paradigms for high fidelity fluxonium gates

Chunyang Ding, Helin Zhang, Daniel Weiss, Sai Paivan Chitta, Yuwei Ma, Jens Koch, David Schuster

Fluxonium qubits

Why Fluxonium?

Important quantity for most SC qubit gates is:

Gate time / Coherence time

- Coherence (esp. T1) scales inversely with qubit frequency
- Gate time scales like $min(\omega_{01}, \alpha)$

Fluxonium decoherence should be slower, but gates can be faster

Low frequency is cheaper / easier Less crowding of transitions

Rethinking paradigms

• Initialization via laser cooling

• Initialization via active reset

• Ultrafast single qubit gates

• High fidelity galvanicallycoupled two qubit gates

10.0

Running time (hours

7.5

12.5

15.0

17.5

Rethinking paradigms

• Initialization via laser cooling

• Initialization via active reset

• Ultrafast single qubit gates

• High fidelity galvanicallycoupled two qubit gates

10.0

Running time (hours

7.5

12.5

15.0

17.5

 Reset fidelity limited by cavity & |f> state population

-----Readout

 $|e1\rangle$ -

le0⟩

1**g0**)

|h0>

Reset fidelity limited by cavity & |f> state
 population

• Perform a $|e\rangle \rightarrow |f\rangle \pi$ pulse before readout

• 50% readout fidelity

 In newer samples no longer necessary to excite for readout

Qubit initialization and readout

8

Qubit initialization and readout

Qubit initialization and readout

97% initial state fidelity, $T_q = 190 \ \mu K$

Rethinking paradigms

• Initialization via laser cooling

• Initialization via active reset

• Ultrafast single qubit gates

• High fidelity galvanicallycoupled two qubit gates

7.5

10.0

Running time (hours

12.5

15.0

17.5

Real time dispersive readout

- Better readout design results in high fidelity readout
- Paramp would still speed up (and improve) measurement, state preparation

- Qubit prepared by measurement w/ feedback
- Statistical infidelity $\sim 2\%$
- Infidelity of prepared states ~18% (~.98mK)

Demonstration of post-selection protocol

Demonstration of post-selection protocol

Riste 2012 Phys. Rev. Lett. 109 050507

Demonstration of post-selection protocol

Riste 2012 Phys. Rev. Lett. 109 050507

Executing the active reset protocol with the QICK

Stefanazzi 2021 arXiv: 2110.00557

Firmware and software is published and **open-source** https://github.com/openquantumhardware/qick

Developed with team at Fermi National Lab Review of Scientific Instruments **93**, 044709 (2022)

Rethinking paradigms

• Initialization via laser cooling

• Initialization via active reset

• Ultrafast single qubit gates

• High fidelity galvanicallycoupled two qubit gates

10.0

Running time (hours

7.5

12.5

15.0

17.5

0.9970

$$H/h = A\delta\Phi_{ext}\sigma_x + \frac{\omega_q}{2}\sigma_z$$

It's easy to have $A\delta\Phi_{ext} \gg \frac{\omega_q}{2}$

- Lab frame
- Finished within a qubit cycle
- zero total net flux, effective echo for low frequency noise

Fast single-cycle flux gates

200

A (MHz)

0

400

200

A (MHz)

0

400

0

0

400

200

A (MHz)

Duration (about 4x faster than previous gen) Y/2: 5.5 ns Z/2: 6ns Y: 8ns (total pulse)

Qubit frequency **100x slower** than transmon, gate speed **2x faster**!

0.0

Zhang, H. et al Phys. Rev. X 11, 011010 (2021) 20

Rethinking paradigms

• Initialization via laser cooling

• Initialization via active reset

• Ultrafast single qubit gates

• High fidelity galvanicallycoupled two qubit gates

10.0

Running time (hours

7.5

12.5

17.5

15.0

Optical Image of the device

22

Freq (MHz) T_1	(us) \Box	$\Gamma_{2E}(us)$
$\begin{array}{ccc} 48.45 & 17 \\ 61.76 & 38 \end{array}$	73.74 2 81.48 2	223.09 238.45

Two inductively coupled fluxoniums

Two qubits are coupled via a shared inductor

$$H \approx H_a + H_b + \frac{L_c}{L_a} E_L \varphi_a \varphi_b$$

In computational basis looks like

$$H_c \approx 4\pi^2 \frac{L_c}{L_a} E_L \sigma_x \sigma_x$$

Problem: It's always on!

Now the shared inductance is tunable with coupler flux Φ_{C}

To the second order, it gives a tunable coupling term from 0 to

$$\sim E_{JC} \frac{E_{La} E_{Lb}}{E_{L1} E_{L2}} \varphi_a \varphi_b$$

Decomposing the two qubit Hamiltonian into single qubit bases:

 $H = \omega_1 \sigma_{z1} + \omega_2 \sigma_{z2} + A_1(\Phi_a, \Phi_c) \sigma_{x1} + A_2(\Phi_b, \Phi_c) \sigma_{x2} + J(\Phi_c, \Phi_a, \Phi_b) \sigma_{x1} \sigma_{x2}$

- Couple two fluxonium qubits galvanically/inductively:
 - Tunable coupling
 - Exactly cancel coupling
 - Coupling strength can rival single qubit energy

experiment: capacitive coupling

- F. Bao et al. arXiv:2111.13504 (2021)
- Q. Ficheux et al. PRX 11, 21026 (2021)
- H. Xiong et al. arXiv:2103.04491 (2021)
- L. Ding et al. arXiv: 2304.06087 (2023)

theory: capacitive coupling

- Y. Chen et al. arXiv:2110.00632 (2021)
- K. N. Nesterov et al. PRX Quantum 2, 020345 (2021)
- I. N. Moskalenko et al. arXiv:2107.11550 (2021)

- Coupler E_L>>Qubit E_L
- Lowest coupler mode frequency ~ 10 GHz
- $J = J_+ + J_-$, thus when $J_+ = -J_-$, we turn off all coupling

DK. Weiss, PRX Quantum 3 (4), 040336 29

Tunable Coupler – Couplings vs coupler flux

Effective Hamiltonian $H = \omega_1 \sigma_{z1} + \omega_2 \sigma_{z2} + A_1(\Phi_a, \Phi_c) \sigma_{x1} + A_2(\Phi_b, \Phi_c) \sigma_{x2} + J(\Phi_c, \Phi_a, \Phi_b) \sigma_{x1} \sigma_{x2}$

ZZ coupling measurement by Qubit B Ramsey

 $T_2^* \approx 180 \,\mu s$ ZZ $\approx 0.2 \,kHz$

Coupler parameters

Checking coupler parameters by varying coupler Ec from -5% to 5%

Inducing a parametric interaction – iSwap

 $\omega_d = \omega_B - \omega_A$

 \sqrt{iSWAP} gate length = 170ns

Inducing a parametric interaction - bSwap

 \sqrt{bSWAP} gate length = 101ns

 $\omega_d = \omega_B + \omega_A$

sqiSWAP and sqbSWAP Kraus matrix

35

SQBSWAP Process Matrix

XEB results - sqbswap

Interleaved Randomized Benchmarking

0.065% +/- 0.006% error per qA 1Q Clifford 0.052% +/- 0.004% error per qB 1Q Clifford 0.137% +/- 0.003% error per 1Q Clifford (Interleaved qA X/2) 0.104% +/- 0.006% error per 1Q Clifford (Interleaved qB X/2) 0.072% error per qA X2 gate (IRB extracted) 0.052% error per qB X2 gate (IRB extracted)

99.533 +/- 0.02% fidelity per average 2Q Clifford 98.986 +/- 0.064% fidelity per 2Q Clifford (Interleaved CNOT) 99.45% fidelity per CNOT gate (IRB)

Major challenges?

- Very sensitive to flux bias noise (sweet spot $<1e-4 \Phi_0$), and thus requires a very clean fridge ground
- Crosstalk between gates is very significant, requires the use of cancellation pulses, careful tuning procedures, and prevents gates from being played in parallel
- Scaling the galvanically coupled design might be difficult for large 2D array of qubits

Yuwei Ma

Daniel Weiss

Helin Zhang

PI: David Schuster

Sai Paivan Chitta

PI: Jens Koch

40

Current sample parameters

 $\omega_{qa} \approx 48 \text{ MHz}$

 $\omega_{qb} \approx 61 \text{ MHz}$

Tunable coupler performance

- Tunable from 0 60MHz using coupler flux, results in gate speeds of 20ns
- Requires adjustments to single qubit flux to remain on sweet spot

$$\varphi_+ = (\varphi_1 + \varphi_2)/2$$

$$\varphi_{-} = \varphi_{1} - \varphi_{2}$$

$$H = 4E_{C_a}n_a^2 + 4E_{C_b}n_b^2 + \frac{E_{L_a}}{2}\varphi_a^2 + \frac{E_{L_b}}{2}\varphi_b^2 - E_{J_a}\cos(\varphi_a + \varphi_{e,a}) - E_{J_b}\cos(\varphi_b + \varphi_{e,b}) \qquad H_a + H_b$$

$$H_+ + H_- \qquad 2E_C n_+^2 + \frac{E_{\widetilde{C}}n_-^2}{2} + \frac{\widetilde{E}_{L_1} + \widetilde{E}_{L_2}}{2}(\varphi_+^2 + \frac{\varphi_-^2}{4}) - E_J\cos(\varphi_- + \varphi_e) + (\widetilde{E}_{L_1} - \widetilde{E}_{L_2})\varphi_+\varphi_-/2$$

$$- E_{L_a}\varphi_a(\varphi_+ + \varphi_-/2) - E_{L_b}\varphi_b(\varphi_+ - \varphi_-/2). \qquad H'$$

Calculate H' with perturbation theory

First order:
$$\varphi_a \to \varphi_a + \frac{\langle \psi_0^{(0)} | \varphi_- | \psi_0^{(0)} \rangle}{2}, \ \varphi_b \to \varphi_b - \frac{\langle \psi_0^{(0)} | \varphi_- | \psi_0^{(0)} \rangle}{2}$$

Second order gives us a coupling term:

 $E_{La}E_{Lb}(\chi^-/2-2\chi^+)\varphi_a\varphi_b$

where
$$\chi^-\equiv\sum_{m\neq 0}\frac{|\langle\psi_0^-|\varphi_-|\psi_m^-\rangle|^2}{e_m^--e_0^-}\qquad \chi^+\equiv\frac{|\langle\psi_0^+|\varphi_-|\psi_1^+\rangle|^2}{\omega_+}$$

XEB results - sqiswap

