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Plan of the talk

▶ Motivations (according to taste)

▶ Building circuits for quantum impurity models

▶ Extracting renormalized parameters from
spectroscopy

▶ Analysis of many-body dissipation

▶ Theoretical modeling
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Motivation for Josephson array aficionados

Motivation for Josephson array
aficionados
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Motivation for Josephson array aficionados

Variety of Josephson junction arrays

Diversity of geometrical structures and spatial scales:
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Motivation for Josephson array aficionados

Solving the standard model?

Josephson junction array Hamiltonian:

H = 2e2
∑
i ,j

[n̂i − ngi (t)]
[
Ĉ−1

]
ij
[n̂j − ngj (t)]−

∑
ij

E J
ij cos(φ̂i − φ̂j)

with φ̂i and n̂i the phase and charge of island i

It is a really complicated problem:

▶ Bulk non-linearity: cos(φ̂i − φ̂j)

▶ Disordered couplings
[
Ĉ−1

]
ij
and E J

ij

▶ Charge noise ngi (t), possibly time-dependent

▶ DC measurement: I (V ) has complex non-equilibrium dynamics

▶ Quantum effects: [n̂i , φ̂j ] = iδi ,j ⇒ many-body problem
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Motivation for Josephson array aficionados

Making life simpler: single Josephson quantum “impurity”

Device: chain of identically large junctions ended by a SQUID

Life becomes easier:

▶ Bulk linearity: 1− cos(φ̂i − φ̂i+1) ≃ (φ̂i − φ̂i+1)
2/2

▶ Couplings
[
Ĉ−1

]
ij
and E J

i ,i+1 clean and well characterized

▶ Charge noise: no island in this design

▶ AC measurement in linear response: spectroscopy

▶ Quantum effects: driven by a single and tunable non-linearity
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Motivation for quantum dots practitioners

Motivation for quantum dots
practitioners
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Motivation for quantum dots practitioners

Fermionic vs bosonic quantum impurities

Kondo model:

H =
∑
kσ

ϵkc
†
kσckσ + Js⃗(x = 0).S⃗

▶ Fermi liquid (some variants show quantum phase transitions)

▶ Tunable exchange coupling J via gates

▶ Renormalized Kondo scale TK ≃ De−D/J ≪ J
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Motivation for quantum dots practitioners

Fermionic vs bosonic quantum impurities

Boundary sine-Gordon model:

H =
∑
k

ωka
†
kak − EJ(ΦB) cos[ϕ(x = 0)]

▶ Important QFT with algebraic correlations
▶ Tunable non-linearity: EJ(ΦB) = EJ | cos(πΦB/Φq)|

with ΦB the flux in the SQUID, and Φq = h/2e
▶ Bosonic and fermionic models have mathematical connection
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Motivation for quantum opticians

Motivation for quantum opticians
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Motivation for quantum opticians

QED at ultra-strong coupling
Linewidth of atomic level in 3d vacuum:

Γ

∆
≃ (αQED)

3

Ultra-strong coupling regime of QED:

Γ

∆
≃ 1

▶ Huge Lamb shift of ∆∗ (akin to TK for fermions)
[Leggett et al., RMP 1987]

▶ Higher probability for down-conversion
[Goldstein, Devoret, Houzet & Glazman, PRL 2013]
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Building circuits for bosonic impurities

Building circuits for bosonic impurities

[Léger et al., SciPost 2023]
[Kuzmin et al., PRL 2021 and arxiv 2023]

[Murani et al., PRX 2020]
[Léger et al., Nat. Comm. 2019]

[Kuzmin et al., npj Quantum 2019]
[Puertas-Martinez et al., npj Quantum 2019]

[Magazzu et al., Nat. Comm. 2018]
[Forn-Diaz et al., Nat. Phys. 2017]
[Snyman & Florens, PRB 2015]

[Peropadre, Zueco, Porras, & Garćıa-Ripoll, NJP 2013]
[Goldstein, Devoret, Houzet & Glazman, PRL 2013]

[LeHur, PRB 2012]
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Building circuits for bosonic impurities

High impedance waveguide
Alternative expression: αQED = Z0

2RK

▶ Z0 =
√

µ0/ϵ0 ≃ 376Ω: vacuum impedance

▶ RK = h/e2 ≃ 25812Ω: resistance quantum

LC waveguide: Zchain =
√
L/Cg

Waveguide from linear Josephson junctions:

V = ℏ
2eIc

dI/dt = LJdI/dt

▶ Putting numbers: LJ ≃ 1 nH/µm ≃ 104Lgeometric

▶ Effective coupling constant: αchain = (2e)2

e2
Zchain
2RK

≃ 0.1 → 1
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Building circuits for bosonic impurities

Waveguide engineering

Harmonic regime:
▶ For EJ ≫ (2e)2/(2CJ + Cg ), weak phase fluctuations:

Hchain ≃ 1

2

∑
i ,j

(2e)2ni
(
C−1

)
ij
nj+

∑
i

EJ

2
(Φi−Φi+1)

2 =
∑
k

ωka
†
kak

Spectrum:

ωk = 2 sin(k2 )
√

(2e)2EJ

Cg+4CJ sin
2(k/2)

k = πn
N with n = 1 . . .N

N = number of junctions
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Building circuits for bosonic impurities

A circuit view of the full device

▶ Boundary = terminal junction (SQUID) with tunable EJ(ΦB)

▶ Chain of microwave resonators = resonant cavity

▶ AC measurement: Ioute
iωoutt vs Iine

iωint (in GHz range)

[Léger et al., Nat. Comm. 2019; Kuzmin et al., npj 2019]
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Building circuits for bosonic impurities

Transmission of the device

Measurement at zero flux: EJ(ΦB = 0) is large → linear regime

▶ Eigenmodes are clearly resolved as sharp anti-resonances

▶ Very high quality factor

▶ Level spacing decreases at high frequency: UV cutoff ωP
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Building circuits for bosonic impurities

Properties of the array

Dispersion relation: ωk =

√
4

LCg

sin2(k/2)

1+4(C/Cg ) sin2(k/2)

Fitted chain parameters: L = 0.52nH, Cg = 0.15fF, C =144fF

Chain impedance: Zchain =
√
L/Cg = 1.9kΩ ⇒ α = 0.3

Plasma frequency: ωP = 18 GHz (UV cutoff)
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Extracting renormalized parameters from spectroscopy

Extracting renormalized parameters
from spectroscopy
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Extracting renormalized parameters from spectroscopy

Impact of the boundary on the mode spectrum

Two clear effects by decreasing EJ :

▶ Peaks shift → Re[Σ(ω)] = dispersive response

▶ Peaks broaden → Im[Σ(ω)] = dissipative response

Question: where hides the terminal junction?
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Extracting renormalized parameters from spectroscopy

Terminal junction frequency?

Isolated junction:

ωJ =
1√
LJCJ

=
√
2EcEJ(ΦB)

Boundary junction + chain:

EJ(ΦB) changes the boundary condition of the waveguide
⇒ affects all eigenmodes via phase-shift
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Extracting renormalized parameters from spectroscopy

Dispersive response: phase shift spectroscopy

Phase shift: δθk = π ∆ωk
ωk+1−ωk

[DeWitt, Phys. Rev. (1956); Puertas et al., npj Quantum Inf. (2019)]
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Extracting renormalized parameters from spectroscopy

Dispersive response: phase shift spectroscopy
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Extracting renormalized parameters from spectroscopy

Dispersive response: phase shift spectroscopy

Lines are
predictions
from linear
model

▶ Inflexion point of δθk ⇐⇒ terminal junction frequency ω∗
J

▶ Clearly ω∗
J(ΦB)=

√
2EcE ∗

J (ΦB) decreases with increasing flux

Is it just due to E ∗
J (ΦB) = E ∗

J | cos(πΦB/Φq)|?
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Extracting renormalized parameters from spectroscopy

Renormalization of the Josephson energy

Red dots = measured E ∗
J

Blue line = bare EJ

Black line = SCHA E ∗
J

SCHA = microscopic self-consistent harmonic approximation
E ∗
J (ΦB) = EJ(ΦB)e

−⟨φ̂2
0⟩/2 [Schön & Zaikin, Phys. Rep. (1990)]

Fit of unknown parameters: EJ(0) = 27GHz
EJ(Φq/2)/EJ(0) = 3% (SQUID asym.)

Note: Ambegaokar-Baratoff gives EJ(0) = 26GHz, OK!

: S. Florens - Many-body impurity physics in designed Josephson circuits 19



Extracting renormalized parameters from spectroscopy

Can we see scaling law of E ∗
J ? (almost)

Known result: E ∗
J = E scaling

J ∝ EJ(EJ/ωP)
α/(1−α) for EJ ≪ ωP

[Panyukov & Zaikin Physica B 1988, Hekking & Glazman PRB 1997]

Warning: due to shunting capacitance, true UV cutoff is EC < ωP

⇒ scaling regime is not accessible

Dots = E ∗
J measurement

Dashed = Min(EJ ,E
scaling
J )

Black line = E ∗
J from SCHA
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Analysis of many-body dissipation

Analysis of many-body dissipation
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Analysis of many-body dissipation

Dissipative response: quality factor spectroscopy
Analysis of two given resonances at small and large ΦB :

4.52 4.55
0

1

|t|
2

4.15 4.55

f (GHz)

0.95

1

|t|
2

4.52 4.55
0

1

|t|
2

4.15 4.55

f (GHz)

0.95

1

|t|
2

▶ Nearly Lorentzian lineshape

▶ Peak depth = 1
1+Qe/Qi

▶ Peak total width = γk =
[

1
Qe

+ 1
Qi

]
ωk = γexternalk + γinternalk

→ extract internal quality factor Qi

Qi < ∞ ⇒ photons are lost somewhere inside the circuit
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Analysis of many-body dissipation

Dielectric losses in the chain

▶ Dielectric losses dominate at low flux

▶ Phenomenological fit [Nguyen et al. PRX 2019] is subtracted to
obtain the intrinsic internal losses
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Analysis of many-body dissipation

Internal losses for all modes
Peak linewidth due to internal losses: γinternalk = ωk/Qi (ωk)

Striking re-entrant behavior:
ΦB = 0 : −EJ(ΦB) cos(φ̂0) ≃ EJ(0)φ̂

2
0/2 → low-loss linear regime

ΦB = Φq/2 : −EJ(ΦB) cos(φ̂0) ≃ 0 → back to linear again?
But EJ(Φq/2) ̸= 0, due to SQUID asymmetry ⇒ losses persist!
[Kuzmin et al. PRL 2021]

: S. Florens - Many-body impurity physics in designed Josephson circuits 23



Theoretical modeling

Theoretical modeling
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Theoretical modeling

Full modeling in the non-linear case

H =
∑
k

ωka
†
kak − EJ(ΦB) cos[ϕ(x = 0)]

Dyson equation :
[
ω2Ĉ − 1/L̂+

i2ω

Ztl
δ̂(N) − Σ(ω)δ̂(0)

]
Ĝ = 1

Ztl = 50Ω: external broadening from transmission line

Transmission from Kubo: t(ω) = 2iωGN,N(ω)/Ztl
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Theoretical modeling

Josephson-Keldysh-Feynman diagrams
Hamiltonian: H =

∫
dk ω(k)a†kak − EJ cos(ϕ0)

ϕ0 =

∫
dk g(k)

(
a†k + ak

)
cos(ϕ0) contains a

†
k1a

†
k2a

†
k3ak4 + . . . ⇒ frequency conversion

Expansion: ΦB/Φq close to 1/2 ⇐⇒ EJ small

Σ(t) = + + + . . . = EJδ(t)e
−
1

2
GF (0)

→ renormalizes EJ to E ∗
J (equivalent to “SCHA”)

Σ(t) = + + . . . = E 2
J

[
sin(G (t))− G (t)

]
→ provides dissipative response Im[Σ(ω)]
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Theoretical modeling

Frequency response from lowest order diagrams

Full microscopic model:

0

1.5

3

−
Im

Σ
(G

H
z)

0 2 4 6 8

f (GHz)

0

1

|t|
2

▶ OK: qualitatively similar to the experimental internal width γk

▶ Not OK: incorrect multiplet structure (not seen experimentally)
This is due to sharp resonances in the self-energy
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Theoretical modeling

Physical origin of multiplets: frequency conversion

0

0.15

−
Im

Σ
(G

H
z)

1
1
8

1
2
7

1
3
6

1
4
5

2
2
6

2
3
5

2
4
4

3
3
4

3.96 3.98 4 4.02 4.04 4.06 4.08

f (GHz)

0

0.15

−
Im

Σ
(G

H
z)

Mode = 10
Ztl = 10Ω
T = 0K
Emission

Mode = 10
Ztl = 10Ω
T = 20mK
Emission+
Absorption

At T = 0K: 3-photons (or more) resonances at ω = ωk1 + ωk2 + ωk3

[Goldstein et al. PRL 2013; Gheeraert et al. PRA 2018; Houzet and Glazman PRL

2020; Burshtein et al., PRL 2021; Kuzmin et al. PRL 2021]

At finite T : also absorption resonances at ω = ωk1 ± ωk2 ± ωk3

[Léger et al. SciPost 2023]
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Theoretical modeling

Improved diagrammatics

Resum bold (skeleton) diagrams:

Σ(t) = + + . . .

Small ωk ≃ v .k ⇒ many near degeneracies in many-body spectrum
⇒ self-consistency provides level repulsion

0

1

2

−
Im

Σ
(G

H
z)

0 2 4 6 8

f (GHz)

0

1

|t|
2

▶ Smooth Im[Σ(ω)] ⇒ true dissipation
▶ Leads to Lorentzian transmission peaks as seen experimentally
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Theoretical modeling

Many-body losses: theory vs experiment

Losses at high flux: perturbative regime E ∗
J ≪ ω

ΦB = 0.5Φq ΦB = 0.49Φq ΦB = 0.48Φq

2 4 6 8 10

f (GHz)

10−1

100

101

∆
f i

(M
H

z)

Φext = π

2 4 6 8 10

f (GHz)

10−1

100

101

Φext = 0.98π

2 4 6 8 10

f (GHz)

10−1

100

101

102

Φext = 0.96π

▶ Fit for ΦB = 0.5Φq and 0.49Φq:
⇒ EJ(0) = 25GHz and SQUID asym. 2.5%
Agreement with theory at small flux

▶ Losses at ΦB = 0.48Φq well described (no fitting)

▶ Losses are a smooth function: many-body dissipation
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Theoretical modeling

Can one see scaling laws of losses? (no)

Known result: Σ(ω) ≃ ω2α−1 (Luttinger liquid analogy)

▶ Diagrammatics does reproduce the scaling laws

▶ Scaling is only found if E ∗
J ≪≪ UV cutoff

Limitation of Josephson platforms w.r.t. electronic circuits
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Theoretical modeling

Non perturbative regime of the experiment

Losses at intermediate flux: ΦB = 0.42Φq

Compares experiment to
O(E 2

J ) and O(E 3
J ) diagrams

▶ Losses have a peak at ω = ω∗
J

▶ Diagrammatic theory underestimates the magnitude of losses
⇒ requires a truly non perturbative approach
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Theoretical modeling

Summary
▶ Superconducting circuits can reach truly many-body regimes
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Theoretical modeling

Summary
▶ Superconducting circuits can reach truly many-body regimes

Renormalization of the junction modeled in large EJ regime 3○
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Theoretical modeling

Summary
▶ Superconducting circuits can reach truly many-body regimes

Many-body losses modeled in small EJ regime 4○
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Theoretical modeling

Summary
▶ Superconducting circuits can reach truly many-body regimes

The experiment is non-perturbative in a large accessible domain 2○
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Theoretical modeling

Summary
▶ Superconducting circuits can reach truly many-body regimes

However reaching universal scaling domain 1○ is still hard
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