QuanDi 05-09 June 2023 Les Houches

Scanning Critical Current Microscopy on an out-of-equilibrium superconducting nanowire

Thomas Jalabert Eduard Driessen Florence Levy-Bertrand Frédéric Gustavo Jean-Luc Thomassin Claude Chapelier

The team

Florence Levy-Bertrand

Frédéric Gustavo

Thomas Jalabert

Jean-Luc Thomassin

Superconducting Nanowire Single Photon Detector

Renema, J. J. et al. Phys. Rev. Lett. (2014).

1 – High energy quasiparticles injection

T. Jalabert, et al., Nat. Phys. (2023)

2 – Low energy quasiparticles injection

Scanning Critical Current Microscopy

Tuning the critical current

Mapping the local critical current

Power dependence

 $\succ I_c$ controlled by P

Heat diffusion model

Heat diffusion model

Heat diffusion model

Injected power
$$P_0$$

Tip position x_0
Tip position x_0
Diffusion k_e
e-ph coupling Σ
Phonons $T_{ph} = T_b$
 $\nabla(twk_e \frac{\partial T_e(x)}{\partial x}) = \Sigma wt \left(T_e^p(x) - T_{ph}^p\right) - P_0 \delta(x - x_0)$
 $p = 4$ $l < \lambda_{ph}$ Static disorder
 $p = 5$ $l > \lambda_{ph}$
 $l \approx \lambda_{ph}$ for $V_b = 20$ meV
F. C. Wellstood, C. Urbina, and John Clarke, Phys. Rev. B 49 (1994)
A. Sergeev and V. Mitin, Phys. Rev. B 61 (2000)

p = 4

p = 6

p = 5

Electronic temperature

$$\nabla(twk_e \frac{\partial T_e(x)}{\partial x}) = \Sigma wt(T_e^5(x) - T_{ph}^5) - P_0\delta(x - x_0)$$

Spatial dependence

Beyond the stationary thermal model

Hot spot model

Hot spot model

 $N_0 = 31 \ 10^{46} \ J^{-1} m^{-3} \ \Delta = 370 \ \mu eV \ \xi = 35 \ nm \ w = 300 \ nm \ d = 10 \ nm \ D = 6.8 \ 10^{-4} \ m^2 s^{-1}$

Numerical simulation of the hot spot dynamics

$$\delta N_{slab} = \delta N_c \Rightarrow I_c = I_{c0} \left(1 - \frac{\tau_{inj} P_i \left(1 - e^{-\frac{t}{\tau}} \right)}{N_0 \Delta^2 \operatorname{w} d\sqrt{\pi D t}} \right)$$

 $N_0 = 31 \ 10^{46} \ J^{-1} m^{-3} \ \Delta = 370 \ \mu eV \ \xi = 35 \ nm \ w = 300 \ nm \ d = 10 \ nm \ D = 6.8 \ 10^{-4} \ m^2 s^{-1}$

Numerical simulation of the hot spot dynamics

 $\succ \frac{I_c}{I_t} \sim 10^6$ ➤ Thermal effect

➢ Quasiparticle dynamics ➢ τ ~ 40 ps

T. Jalabert, et al., Nat. Phys. (2023)

Low bias injection

- No electronic temperature
- Non-Fermi-Dirac distribution function

$$\frac{1}{N_0 V_{eff}} = \int_0^{\omega_D} dE \ \frac{1 - 2f(E)}{\sqrt{E^2 - \Delta^2}}$$

Low bias injection

Low bias injection

- Phonon trapping

 $\tau_{rec}' = \tau_{rec} (1 + \frac{\tau_{esc}}{\tau_{break}})^2$

A. Rothwarf and N.B. Taylor, Phys. Rev. Lett. (1967)

Non-thermal quasi-particles Distribution function effect $\tau_{rec} \sim 100 - 500 \, ns$

Scanning Critical Current Microscopy Outlook

Current crowding

Highly disordered superconductors

Conclusion

 $\geq \frac{I_c}{I_t} \sim 10^6$ > Thermal effect

- ➢ Quasiparticle dynamics τ ~ 40 ps
- Non-thermal quasi-particles
 Distribution function effect
 $\tau_{rec} \sim 100 500 \, ns$

T. Jalabert, et al., Nat. Phys. (2023)

