Quantum Optics Aspects of Inelastic Tunneling with a GrAI Resonator

Gianluca Aiello, Ognjen Stanisavljevic, Jean-Côme Philippe, Marco Aprili, Julien Gabelli, Julien Basset & Jérôme Estève

NS2 Group, Laboratoire de Physique des Solides, Orsay

Quandi Workshop - Les Houches - 06/06/2023

Experimental Situation

How is charge tunneling modified when:

- fine structure constant becomes large
- speed of light becomes low
- 1. Quasiparticle tunneling
- 2. Cooper pair tunneling
- 3. Large disorder limit

What about the photons?

Experimental Situation

- Large Fine structure constant: $Z_c = \sqrt{L/C} \approx 5 \,\mathrm{k}\Omega$ $\alpha = Z/2R_K \approx 0.1$

- Light is slow: $v = 1/\sqrt{LC} \approx c/60$

Experimental Situation

- Large Fine structure constant: $Z_c = \sqrt{L/C} \approx 5 \,\mathrm{k}\Omega$ $\alpha = Z/2R_K \approx 0.1$

- Light is slow: $v = 1/\sqrt{LC} \approx c/60$

Many modes highly coupled to the junction

High Impedance Resonator

Geometric trick : spiral resonator

Rolland et al. Phys. Rev. Lett. 122, 186804 (2018)

Peruzzo et al. PRX Quantum 2, 040341 (2021)

Metamaterial with high inductance

JJ Chains

Disordered Superconductor

. . .

Masluk et al. Phys. Rev. Lett. 109, 137002 (2012)

Experimental Setup

GrA

0.6 ~ 1 kΩ/□

GrAl wire 300 nm x 30 nm $Z_c \approx 5 \text{ k}\Omega$ $\lambda/4 = 200 \,\mu m @ 6 \,GHz$

Photoassisted QP Tunneling

Photoassisted QP Tunneling

Low Impedance

High Impedance

Kramers-Kronig for a single quantum state

Lamb Shift Spectroscopy

Lamb Shift Spectroscopy

Inelastic CP Tunneling

P Tunneling

etween two tunneling events

hotons when $2eV = k \hbar \omega$

Hofheinz et al. PRL **106**, 217005 (2011) Rolland et al. PRL **122**, 186804 (2019) Ménard et al. PRX **12**, 021006 (2022)

F. Portier (Saclay)

Strong coupling regime

- Periodic pattern with period $2e \,\delta V = \hbar \omega_{\min}$
- Maximum of emission at ω when $2e\,V \gg \hbar\omega$

Strong coupling regime

Inelastic Cooper Pair Tunneling

Maxima of MW emission do not always coincide with maxima of current.

Current-Emission Dephasing

 $(55 - 66) \mu V$ $(66 - 77) \mu V$ $(88 - 99) \mu V$ $(99 - 110) \mu V$ $(77 - 88) \mu V$ ----**ң** (10) (9) **נו**יי -**---**(6) רד (7) (8) **[** 1 0 -1 $(110 - 121) \mu V$ $(121 - 132) \mu V$ $(132 - 143) \mu V$ $(143 - 154) \mu V$ $(154 - 165) \mu V$ (11) **רר**י (12) **[** (13)**- F** (14) (15) **בר**י 1 $P/P_{\rm max}$ 0 $(165 - 176) \mu V$ $(176 - 187) \mu V$ $(187 - 198) \mu V$ $(198 - 209) \mu V$ $(209 - 220) \mu V$ (20)**ŋ** (16) (18)(19)(17)0 $(220 - 231) \mu V$ $(231 - 242) \mu V$ $(242 - 253) \mu V$ $(253 - 264) \mu V$ $(264 - 275) \mu V$ **1**(21) **n** (22) ц (23) **F** (24) ----ң (25) 1 0 -10 0 0 -11 -11 _1 1 _1 0 1 -10 1

I/I_{max}

Experimental Setup

 \sim

SQUID

GrA

0.6 ~ 1 kΩ/□

GrAl wire 300 nm x 30 nm $Z_c \approx 5 \text{ k}\Omega$ $\lambda/4 = 200 \,\mu\text{m}$ @ 6 GHz

SQUID Configuration

Flux Coil (mA)

Evolution of MW emission

Evolution of MW emission

Flux Dependence

Flux Dependence

Emitted Power (a.u.)

$$Long Wire Limit$$
$$H = \sum_{m} \hbar \omega_{m} a_{m}^{\dagger} a_{m} - E_{J} \cos \left[\omega_{J} t + \sum_{m} \lambda_{m} (a_{m} + a_{m}^{\dagger}) \right] \qquad \lambda_{m}^{2} \propto 1/(2m+1)$$

 $\omega_{m+1} - \omega_m \propto 1/\text{length}$

Elastic contribution vanishes $\Pi_m e^{-\Lambda_m^2} \rightarrow 0$

What is the limiting I(V) ?


```
Josephson Junction Chain
```

GrAI wire

$$Long Wire Limit$$

$$H = \sum_{m} \hbar \omega_{m} a_{m}^{\dagger} a_{m} - E_{J} \cos \left[\omega_{J} t + \sum_{m} \lambda_{m} (a_{m} + a_{m}^{\dagger}) \right] \qquad \lambda_{m}^{2} \propto 1/(2m+1)$$

$$\omega_{m+1} - \omega_{m} \propto 1/\text{length} \qquad \text{Elastic contribution vanishes } \Pi_{m} e^{-\Lambda_{m}^{2}} \to 0$$

Josephson Junction Chain

GrAI wire

Numerical Simulation

Truncated Wigner Approximation : Stochastic classical traj. $W(x + \lambda) \approx W(x) + \lambda \frac{\partial W}{\partial x}$

Summary

nneling Spectroscopy

GrAl wire 8 x 0.35 x 0.03 μm^3

Electrodynamics ≡ MW mode

Electrodynamics $\equiv RC$ environment

Short Wire Tunneling Spectroscopy

Large zero bias Altshuler-Aronov anomaly \rightarrow bad for qubit ?

Magnetic Field Dependence

Gianluca Aiello, Ognjen Stanisavljevic ean-Côme Philippe, Mathieu Féchant, Alexis Morvan, Marco Aprili, Julien Gabelli, Julien Basset & Jérôme Estève

Perspectives

- Quantum bath engineering: Tunable loss channel / Buffer Mode
- Microwave Photon Detector
- Paramp with DC pump
- The very bright side of Coulomb blockade: Many body open quantum system. Bridge ICPT & Bloch oscillations.

ArXiv:1807.02364 HAL tel-03165358 ArXiv:2204.08701

Many thanks to:

- Fabien Portier, Carles Altimiras, Yuri Mukharski, Ambroise Peugeot
- Claire Marrache-Kikuchi, Hélène Lesueur, Louis Dumoulin
- Nicolas Roch

Inelastic QP tunneling

Dressed State Picture

$$n_0, n_1, \dots; N\rangle$$
 $\varepsilon = n_0 \hbar \omega_0 + n_1 \hbar \omega_1 + \dots + N \hbar \omega_J$

Dressed State Picture

$$H = \sum_{m} \hbar \omega_m a_m^{\dagger} a_m - E_J \cos \left[\omega_J t + \sum_{m} \lambda_m (a_m + a_m^{\dagger}) \right] = \sum_{m} \hbar \omega_m a_m^{\dagger} a_m - (E_J/2) D_{\lambda} e^{i\omega_j t} - hc$$

Dressed State Picture

Inelastic Cooper Pair Tunneling = Fluorescence cascade

Solve master equation between dressed states

Granular Aluminium Resonator

6 GHz mode $\Lambda = 0.74$

Lamb Shift Series Expansion

• Perturbation series diverges for ε_n but converges for $\varepsilon_n - \varepsilon_m$ • Similar to the original Lamb shift effect

$$\begin{split} \delta \omega_{01} &= -\frac{\Lambda^2 e^{-\Lambda^2}}{2e} \sum_{l=0}^{\infty} \frac{\Lambda^{2l}}{l!} (I_{-l-1}^{KK} + I_{-l+1}^{KK} - 2I_{-l}^{KK}) \qquad I_l^{KK} = I^{KK} (V + l\hbar\omega/e) \\ \\ \text{QED expansion } \alpha, \alpha^2, \dots \end{split}$$

n-Photon Loss Rate

Multimode Structure

 $L_{\Box} = 0.65 \text{ nH}$

	$\omega_n/2\pi [{ m GHz}]$	$\tilde{Z}_{c_n}\left[\mathbf{k}\Omega\right]$
n = 0	1.8	3.6
n = 1	6.2	5.8
n = 2	11.8	0.017
n = 3	16.9	1.5
n = 4	22.4	2×10^{-3}
n = 5	27.5	0.710
n = 6	33	3×10^{-4}
n = 7	38.2	0.380