Josephson effect in strongly disordered metallic wires

M. Ismagambetov, A. Lunkin, I. Poboiko, P. Ostrovsky KIT Karlsruhe & MPI Stuttgart

in collaboration with

M. Feigel'man (CNRS Grenoble) N. Kishmar (Columbia University)

Les Houches, 9 June 2023

Outline

Introduction

- ② Experimental motivation
- Classical junction: Usadel equation
- Quantum junction: nonlinear sigma model
- Summary of results

Beenakker formula

[Beenakker '91]

- Generic Josephson junction with an arbitrary scatterer
- Assumptions:
 - Superconducting leads with the order parameter Δ
 - Set of transmission eigenvalues T_i
 - Time-reversal symmetry in the normal state
 - "Short" junction: T_i energy independent (on the scale Δ)
- Current-phase relation (Beenakker formula)

$$I(\phi) = \frac{e\Delta}{2\hbar} \sum_{i} \frac{T_i \sin \phi}{\sqrt{1 - T_i \sin^2(\phi/2)}}$$

Ambegaokar-Baratoff relation

[Ambegaokar, Baratoff '63]

- Tunnel junction between superconductors
- All transmission probabilities small $T_i \ll 1$
- Normal conductance (Landauer formula):

 $\frac{1}{R_N} = \frac{e^2}{\pi\hbar} \sum_i T_i$

Current-phase relation:

•

$$I(\phi) = \frac{e\Delta}{2\hbar} \sum_{i} T_{i} \sin \phi = \frac{\pi\Delta}{2eR_{N}} \sin \phi$$

General AB relation: $L_{i}R_{N} \sim \Delta/e$

Experimental motivation

[Frydman, Ovadyahu '97]

Long junctions with exponentially suppressed conductance

Short diffusive SNS

[Kulik, Omelyanchuk '75]

- Normal diffusive wire $l \ll L \ll \xi$, $E_{\text{Th}} \gg \Delta$
- Classical distribution of T [Dorokhov '84] $\rho(T) = \frac{\pi\hbar}{2e^2 R_N} \frac{1}{T\sqrt{1-T}}$
- Apply Beenakker formula

S

 π

Usadel equation

[Usadel '70]

- Quasiclassical equation for hybrid structures
- Classical motion on a sphere in a uniform force field $S = \frac{\pi\nu}{2} \int dx \left[D \left(\frac{\partial\theta}{\partial x} \right)^2 + D \sin^2\theta \left(\frac{\partial\phi}{\partial x} \right)^2 - 4\epsilon \cos\theta \right]$
- Coordinate x along the wire plays the role of time
- Boundary conditions with superconductor

 $\theta = \theta_S = \arctan \frac{\Delta}{\epsilon}, \quad \phi = \phi_S$

Current

$$I(\phi) = -\frac{2e}{\pi \hbar} \int_0^\infty d\epsilon \frac{\partial S_{\rm min}}{\partial \phi} \label{eq:I}$$

Two limiting cases:

• Short wire $L \ll \xi$, $\Delta \ll E_{\text{Th}}$: Neglect ϵ in S reproduces [Kulik, Omelyanchuk '75] $I(\phi) = \frac{\pi \Delta}{eR_N} \operatorname{arcsinh} \left(\tan \frac{\phi}{2} \right) \cos \frac{\phi}{2}$

• Long wire $L \gg \xi$, $\Delta \gg E_{\text{Th}}$: Set $\theta_S = \pi/2$ numerical solution [Dubos *et al* '01] $I(\phi) = \frac{E_{\text{Th}}}{eR_N}$ function(ϕ)

What about localization?

Quasiclassics (Usadel)

- Tree-like diagrams
- Only Cooperons

- Loop diagrams
- Cooperons and diffusons

Parameters of the problem

- Localization effects become important at long distances
- Typical scales:

	Junction	Superconductivity	Localization
Length:	L	$\xi = \sqrt{D/\Delta}$	$\xi_{\rm loc}=\pi\nu D=\sqrt{D/\Delta_{\rm loc}}$
Energy:	$E_{\rm Th} = D/L^2$	$\Delta = D/\xi^2$	$\Delta_{loc} = D/\xi_{loc}^2$

- Limiting cases
 - Classical limit (weak localization) $L \ll \xi_{loc}$. Solved using Usadel equation
 - $L \ll \xi$, $\Delta \ll E_{\mathsf{Th}}$ classical short [Kulik, Omelyanchuk '75]
 - $L \gg \xi$, $\Delta \gg E_{\mathsf{Th}}$ classical long [Dubos *et al* '01]
 - Quantum limit (strong localization) $L \gg \xi_{\text{loc}}$. To be solved using sigma model

Nonlinear sigma model

- Sigma model action $S = -\frac{\pi\nu}{8} \int_0^L dx \operatorname{str} \left[D(\nabla Q)^2 4\epsilon \Lambda Q \right]$
- Quantum dynamics on a curved superspace in fictitious time $m{x}$
- Hamiltonian: $H = -\nabla_Q^2 + \frac{\epsilon}{\Delta_{\mathsf{loc}}} \operatorname{str}(\Lambda Q)$
- Boundary conditions $Q_{i,f} \Leftrightarrow \{\theta_S, \phi\}$, $\tan \theta_S = \Delta/\epsilon$
- Structure of the manifold pprox product of hyperboloid (bosons) and sphere (fermions):

How to solve?

• Find eigenstates of the Hamiltonian: $\left[-\nabla_Q^2 + \frac{\epsilon}{\Delta_{loc}}\operatorname{str}(\Lambda Q)\right]\psi_{\alpha}(Q) = E_{\alpha}\psi_{\alpha}(Q)$ **2** Compute evolution operator $W = \sum \psi_{\alpha}(Q_i)\psi_{\alpha}(Q_f)\exp[-E_{\alpha}L/\xi_{\text{loc}}]$ **③** Take derivative in phase $I(\phi) = -\frac{\tilde{2e}}{\pi\hbar} \int_{0}^{\infty} d\epsilon \left. \frac{\partial W}{\partial \phi_F} \right|_{\phi_B, r=\phi}$ $\begin{array}{c} Q_i & \phi & Q_f \\ \hline & & & \\ i\theta_S & i\theta_S \end{array} \end{array} \times \begin{array}{c} Q_i & \phi & Q_f \end{array}$ L ≫ ξ_{loc}: consider only lowest eigenstates
 Δ ≪ Δ_{loc}: treat potential perturbatively

Quantum wire $L \gg \xi_{ m loc}$

•

- Disregard potential term completely \implies full rotational symmetry
- Rotate $Q = T_S^{-1} \tilde{Q} T_S$ to bring $Q_i \mapsto \Lambda$

Evolution operator

• Evolution operator at $L \gg \xi_{\text{loc}}$ (take l = 0 and $q \ll 1$):

ib

$$\begin{split} W(\tilde{\theta}_B, \tilde{\theta}_F) &\approx 1 - \pi^2 (\cosh \tilde{\theta}_B - \cos \tilde{\theta}_F) K \left(\cosh \frac{\tilde{\theta}_B}{2} \right) \int_0^\infty dq q^2 e^{-(q^2 + 1/4)L/\xi_{\mathsf{loc}}} \\ &= 1 - \frac{\pi^{5/2} \xi_{\mathsf{loc}}^{3/2}}{4L^{3/2}} e^{-L/4\xi_{\mathsf{loc}}} (\cosh \tilde{\theta}_B - \cos \tilde{\theta}_F) K \left(\cosh \frac{\tilde{\theta}_B}{2} \right) \end{split}$$

Current-phase relation

• Normal conductance: $\frac{1}{R_N} = -\frac{2e^2}{\pi\hbar} \left. \frac{\partial^2 W}{\partial \tilde{\theta}_F^2} \right|_{\tilde{\theta}_{B,F}=0} = \frac{\pi e^2}{4\hbar} \left(\frac{\pi \xi_{\text{loc}}}{L} \right)^{3/2} e^{-L/4\xi_{\text{loc}}}$

• Energy enters only via boundary conditions: $\cos\{\tilde{\theta}_F, i\tilde{\theta}_B\} = \frac{\epsilon^2 + \Delta^2 \cos \phi_{B,F}}{\epsilon^2 + \Delta^2}$

• Current-phase relation: $I(\phi) = -\frac{2e}{\hbar} \int_0^\infty \frac{d\epsilon}{\pi} \frac{\partial W}{\partial \phi_F} \bigg|_{\phi_{B,F} = \phi} = \frac{2\Delta}{\pi e R_N} K^2 \left(\sin \frac{\phi}{4} \right) \sin \phi$

Ambegaokar-Baratoff relation holds!

M. Ismagambetov, A. Lunkin, I. Poboiko, P. Ostrovsky - Josephson effect in strongly disordered metallic wires

Effect of potential term I

• Restore small potential term (relevant only on hyperboloid)

$$H = -\frac{\partial^2}{\partial \tilde{\theta}^2} - \coth \tilde{\theta} \frac{\partial}{\partial \tilde{\theta}} - \frac{1}{\sinh^2 \tilde{\theta}} \frac{\partial^2}{\partial \tilde{\phi}^2} + \frac{\epsilon}{\Delta_{\mathsf{loc}}} \cosh \theta$$

- Potential effectively introduces a wall at $heta_{\sf max} \sim \ln rac{\Delta_{\sf loc}}{\epsilon} \gg 1$
- Rotational symmetry is broken but...

 $\left<\left<\left< a \text{ lengthy calculation skipped} \right>\right>\right>$

...the value of q is quantized $q_n = \frac{\pi n}{\ln(\Delta_{\mathrm{loc}}/\epsilon)}$

• At $L \sim \xi_{\mathsf{loc}} \ln^2(\Delta_{\mathsf{loc}}/\epsilon)$, discreteness becomes important

Effect of potential term II

• Quantization $q_n = \frac{\pi n}{\ln(\Delta_{\mathsf{loc}}/\epsilon)} \implies \text{replace } q\text{-integral by } n\text{-sum}$

- Extra factor in the current $I(\phi) = \frac{2\Delta}{\pi e R_N} F\left(\frac{\pi^2 L}{\xi_{\text{loc}} \ln^2(\Delta_{\text{loc}}/\Delta)}\right) K^2\left(\sin\frac{\phi}{4}\right) \sin\phi$
- Function F(x) quantifies suppression of the Ambegaokar-Baratoff relation

Very long junction $L \gg \xi_{\sf loc} \ln^3(\Delta_{\sf loc}/\Delta)$

• At a length $L \gg \xi_{\text{loc}} \ln^2(\Delta_{\text{loc}}/\Delta)$ only the lowest eigenstate with $q = \frac{\pi}{\ln(\Delta_{\text{loc}}/\epsilon)}$ contributes

- Spectral integral $I(\phi) = -\frac{2e}{\pi\hbar} \int_0^\infty d\epsilon \frac{\partial W}{\partial \phi_F} \bigg|_{\phi = \pi \phi}$ is dominated by the region $\epsilon \lesssim \Delta$
- At yet longer distances $L\gg\xi_{\sf loc}\ln^3(\Delta_{\sf loc}/\Delta)$ spectral integral comes from $\epsilon\ll\Delta$

• Supercurrent
$$I(\phi) = \frac{\pi^3 E_{\mathsf{Th}}}{\sqrt{3} e R_N} \left(\frac{2L}{\pi \xi_{\mathsf{loc}}}\right)^{8/3} \exp\left[-\frac{3\pi}{2} \left(\frac{2L}{\pi \xi_{\mathsf{loc}}}\right)^{1/3}\right] K\left(\sin\frac{\phi}{2}\right) \sin\phi$$

Summary of results

Summary

- ① Complete theory of Josephson effect in 1D SNS junctions with full account of localization
- Q Current-phase relation in five different asymptotic regimes
- (3) Ambegaokar-Baratoff relation holds far beyond localization length (regions II and III)

