

Material Defects in Superconducting Quantum Bits: Origins and Remedies

Jürgen Lisenfeld

Exploring the mysteries of glasses...

...and the sources of decoherence in superconducting qubits...

..to shed new light on atomic tunneling defects.

mysterious anomalies of amorphous materials

measurements in the 1970s revealed universal anomalies of glasses

The Standard Tunneling Model

coordinate

interaction with strain & electric field glasses contain intrinsic states (possibly) formed by atoms which can tunnel \leftrightarrow electric field between two nearly equivalent positions model by Two-Level Tunneling Systems (TLS) $\hat{H}_{\text{TLS}} = \frac{1}{2} \Delta_0 \hat{\sigma}_x + \frac{1}{2} \mathcal{E} \hat{\sigma}_z$ \leftrightarrow phonons, mechanical strain asymmetry $\epsilon_0 + \vec{p} \cdot \vec{E} + \vec{\gamma} \cdot \vec{S}$ transition energy: $^{\succ}$ strain el. dipole moment $\Delta E = \sqrt{\Delta_0^2 + \varepsilon^2}$ potential E-field energy tunnel rate ΔE expect constant energy distribution $P(E) = P_0 \approx 1000 / \text{GHz} \, \mu m^3$ ΔE asymmetry \mathcal{E} neglects interactions between defects

 $[\]mathcal{E}$ (field, strain)

TLS relaxation dynamics

relaxation rate

$$\Gamma_{1} = \left(\frac{\gamma_{l}^{2}}{\nu_{l}^{5}} + 2\frac{\gamma_{t}^{2}}{\nu_{t}^{5}}\right) \quad \frac{\Delta_{0}^{2}E}{2\pi\rho\hbar^{4}} \quad \coth(E/2k_{B}T)$$

 γ : phonon coupling strength

v : sound velocity

 ρ : material density

p: electric dipole moment

phonon Γ₁ -MM

• internal friction $Q^{-1} = \pi P_0 \gamma^2 / 2\rho v^2$ • dielectric loss $\tan \delta = \pi P_0 p^2 / 6\varepsilon_0 \varepsilon_i$

specific heat depends on time

Meissner and Spitzmann, PRL 46, 265 (1981)

Dielectric loss depends on power

J.D. Brehm, J. Lisenfeld et al., APL 111, 12601 (2017)

Devices affected by TLS defects

nanomechanical resonators

quantum systems

ion trap (Los Alamos)

semiconductor qubits

superconducting qubits

Martinis Group, UCSB

optical cavities (Lasers, LIGO, ...)

Harry et al., Class. Quant. Grav. 19, 897 (2002)

kinetic inductance detectors

Dodkins et al., 2018

accelerator cavities

LIGO, Caltech, NSI

Romanenko et al., PRL 119 (2017)

Transmon Qubits

"Xmon" design R. Barends et al. (2013)

Qubits are non-linear LC-Resonators

Transmon qubit energy levels

Transmon Qubits

"Xmon" design R. Barends et al. (2013)

Josephson junction

Qubits are non-linear LC-Resonators

Transmons made at KIT (A. Bilmes)

433-qubit processor made by IBM

Transmon Qubits

- **"Xmon" design** R. Barends et al. (2013) 250nm Josephson junction **DC-SQUID** capacitor flux bias to tune resonance frequency
- qubit coherence is limited by material defects

Qubits are non-linear LC-Resonators

Material Defects in Qubits

Transmon qubit

Josephson junction TL fie

 TLS couple to the AC-electric field of the qubit mode

TLS have random resonance frequencies

Defect Models

Tunneling atoms

W.A. Phillips, Rep. Prog. Phys. 50

Hydrogen rotors and interstitials

A.M. Holder et al., PRL **111** Zhe Wang et al., PRB **98**

Andreev fluctuators

L. Faoro, L.B. loffe et al., PRL **95** R. de Sousa et al., PRB **80**

Kondo resonances L. Faoro, L.B loffe, PRL **96**

Metal-induced gap states S.K. Choi et al., PRL **103**

Phonon-dressed electrons K. Agarwal et al., PRB **87**

Trapped Quasiparticles S. deGraaf et al., Sci. Adv. **6**

physisorbed Hydrogen + O_2

S. deGraaf et al., PRL **118,** Nature Comm. **9** (2018)

Review: C.Müller, J.Cole, J.Lisenfeld, Rep. Prog. Phys. 82, 24501 (2019)

How TLS defects spoil qubit coherence

T₁ depends on qubit frequency

T₁ depends on the sample

Sycamore (Google)
 F. Arute et al., nature (2019)

Eagle (IBM, 2022) https://quantum-computing.ibm.com

T₁ depends on time

\rightarrow Interaction with thermal fluctuators

L. Faoro, L. Ioffe, PRB **91**, 014201 (2014) C. Müller, J.L. et al., PRB **92**, 035442 (2015) S. Schlör, J.L. et al., PRL **123**, 190502 (2019)

controlling TLS by mechanical strain and electric fields

J. Lisenfeld, A. Bilmes et al., npj Quant. Inf. 5, 105 (2019)

tune TLS resonance frequency

J. Lisenfeld, A. Bilmes et al., npj Quant. Inf. 5, 105 (2019)

tune TLS resonance frequency

TLS studies at KIT

TLS strain spectroscopy Grabovskij et al., Science 338, 232 (2012)

coherently coupled TLS

Grabovskij et al., NJP 13, 063015 (2011) Lisenfeld et al., nature comm. **6**, 6182 (2015)

two coherently coupled TLS J. Lisenfeld et al., Nat. Commun. 6, 6182 (2015) 6.8 requency (GHz) TLS 6 TLS2 6.0 20 40 n strain / piezo voltage (V) mechanical strain / piezo voltage (V)

frequency (GHz)

Γ₁ (ns)

-50

Ω

-20

9

TLS studies at KIT

TLS strain spectroscopy

Grabovskij et al., Science 338, 232 (2012)

coherently coupled TLS

Grabovskij et al., NJP 13, 063015 (2011) Lisenfeld et al., nature comm. **6**, 6182 (2015)

noise from thermal TLS

Müller et al.,PRB 92, 035442 (2015)Brehm et al.,APL 111, 112601 (2017)Meissner et al.,PRB 97, 180505 (2018)Schlör et al.,PRL 123, 190502 (2019)

TLS studies at KIT

TLS strain spectroscopy

Grabovskij et al., Science 338, 232 (2012)

coherently coupled TLS

Grabovskij et al., NJP 13, 063015 (2011) Lisenfeld et al., nature comm. **6**, 6182 (2015)

noise from thermal TLS

Müller et al.,PRB 92, 035442 (2015)Brehm et al.,APL 111, 112601 (2017)Meissner et al.,PRB 97, 180505 (2018)Schlör et al.,PRL 123, 190502 (2019)

testing microscopic models

Cole et al., APL **97**, 252501 (2010) Bushev et al., PRB **82**, 134530 (2010)

coherent TLS control & readout

Lisenfeld et al., PRL **12**, 230504 (2010) Lisenfeld et al., PRB **81**, 100511 (2010) Lisenfeld et al., Sci. Rep. **6**, 23786 (2016) Bilmes et al., PRB **96**, 064504 (2016) Matityahu et al., PRB **95**, 241409(R) (2017)

electric-field tuning of TLS

Lisenfeld et al., npj Quant. Inf. 5, 105 (2019) Bilmes et al., Sci. Rep. 10, 3090 (2020) Lisenfeld et al., npj Quant. Inf. 9, 8 (2023)

Controlling defects by Electric Fields

tune TLS resonance frequency

Controlling defects by Electric Fields

Decoherence due to junction-TLS

TLS in the tunnel barrier

qubit decay rate due to a single junction-TLS:

• $g = \left(\frac{\Delta_0}{E}\right) \vec{p} \cdot \vec{E} \approx 50 \text{ MHz}$ TLS-qubit coupling strength

E-field in tunnel barrier:

$$|\vec{E}| = \sqrt{\frac{h\omega}{2C}} \frac{1}{d} \approx 2 \text{ kV/m}$$

TLS dipole moment $\vec{p} \approx 1e$ Å

 \implies $\Gamma_1 \approx (125 \ \mu s)^{-1}$

for 2 TLS at detuning $\delta\pm5~{\rm GHz}$ and 2 junctions in parallel at typical TLS densities

• $\Gamma_{TLS} \approx 10 \text{ MHz}$

TLS decoherence rate

Decoherence due to junction-TLS

TLS in the tunnel barrier

qubit decay rate due to a single junction-TLS:

• $g = \left(\frac{\Delta_0}{E}\right) \vec{p} \cdot \vec{E} \approx 50 \text{ MHz}$ TLS-qubit coupling strength

E-field in tunnel barrier:

$$|\vec{E}| = \sqrt{\frac{h\omega}{2C}} \frac{1}{d} \approx 2 \text{ kV/m}$$

TLS dipole moment $\vec{p} \approx 1e$ Å

 \Rightarrow $\Gamma_1 \approx (125 \ \mu s)^{-1}$

for 2 TLS at detuning $\delta\pm5~{\rm GHz}$ and 2 junctions in parallel at typical TLS densities

qubit resonance with junction-TLS

avoided level crossings with TLS in JJs

position of two-photon line reveals couplings between qubit and TLS g_{\perp} : transversal / charge or g_{\parallel} : longitudinal / critical current

no detectable critical current coupling $g_{\perp} = 31.9 \text{ MHz}, \quad g_{||} < 1 \text{ MHz}$

multi-photon transitions higher power:

channels in a JJ

Spectrum of TLS-Qubit-Resonator interactions

Spectrum of TLS-Qubit-Resonator interactions

Spectrum of TLS-Qubit-Resonator interactions

simulation of driven system (Qutip)

qubit expectation value

TLS in granular aluminum resonators

M. Kristen, N. Voss, M. Wildermuth, J. Lisenfeld, H.R. Rotzinger and A.V. Ustinov, in prep. (2023)

stripline resonator:

- ~25 nm-thick grAl on Sapphire b)
- width = 2 μ m, length=505 μ m
- $R_n: 0.68 \text{ k}\Omega/\Box$
- resonance at 7.48 GHz

avoided level crossings

TLS in granular aluminum resonators

M. Kristen, N. Voss, M. Wildermuth, J. Lisenfeld, H.R. Rotzinger and A.V. Ustinov, in prep. (2023)

stripline resonator:

- ~25 nm-thick grAl on Sapphire
- width = 2 nm, length=505 nm
- $R_n: 0.68 \text{ k}\Omega/\Box$
- resonance at 7.48 GHz

avoided level crossings

determine locations of surface-TLS

A. Bilmes, A. Megrant, P. Klimov, G. Weiss, J.M. Martinis, A.V. Ustinov, and J. Lisenfeld., Scientific Reports 10, 3090 (2020)

two independent DC-electrodes

measure simulate $\frac{\gamma_{\rm t}V_{\rm t}}{\gamma_{\rm b}V_{\rm b}} = \frac{\boldsymbol{d}\boldsymbol{E}_{\rm t}(\boldsymbol{x})}{\boldsymbol{d}\boldsymbol{E}_{\rm b}(\boldsymbol{x})}$

then solve for location x

distinguish TLS at different circuit interfaces

determine locations of surface-TLS

A. Bilmes, A. Megrant, P. Klimov, G. Weiss, J.M. Martinis, A.V. Ustinov, and J. Lisenfeld., Scientific Reports 10, 3090 (2020)

two independent DC-electrodes

simulate measure $d E_{
m t}(x)$ $\gamma_{
m t} V_{
m t}$ $oldsymbol{d} oldsymbol{E}_{
m b}(oldsymbol{x})$ $\gamma_{
m b} V_{
m b}$

qubit

electrode

100nm

then solve for location x

E-field simulations 0.5 V on top electrode on **bottom** electrode

Iocations of TLS along film edge

distinguish TLS at different circuit interfaces

mapping TLS locations

on-chip gate electrodes

measure response of TLS to each electrode

Goals:

- obtain 2D-maps of defect positions
- clarify role of TLS on junction leads
- compare TLS formation by optical and eBeam lithography, Ion-milling, residuals

J. Lisenfeld, A. Bilmes et al., npj Quant. Inf. 9, 8 (2023)

Idea:

increase T_1 – time by tuning defects away from qubit resonance

Demo:

Enhancing the Coherence of Superconducting Qubits with Electric Fields

J. Lisenfeld, A. Bilmes, and A.V. Ustinov, npj Quant. Inf. 9, 8 (2023)

J. Lisenfeld, A. Bilmes et al., npj Quant. Inf. 9, 8 (2023)

Idea:

increase T_1 – time by tuning defects away from qubit resonance

Demo:

Enhancing the Coherence of Superconducting Qubits with Electric Fields

J. Lisenfeld, A. Bilmes, and A.V. Ustinov, npj Quant. Inf. 9, 8 (2023)

J. Lisenfeld, A. Bilmes et al., npj Quant. Inf. 9, 8 (2023)

Measure T_1 vs. applied E-field, find optimal E-field where T_1 reaches maximum

Benchmark:

Monitor T_1 for 30 minutes at zero and optimal E-fields

repeat at various frequencies

J. Lisenfeld, A. Bilmes et al., npj Quant. Inf. 9, 8 (2023)

E-field tuning: Integration in quantum processors

- Flip-Chip architecture
- Sycamore, 53-qubits, 86 tunable couplers (Google)
 F. Arute et al., nature 574, 505 (2019)

- easy to implement
- efficient (20+% more T_1 time)
- fast (<1 minute or on-the-fly)
- scalable to multi-qubit processors

Integration of DC-electrodes

E-field simulation

Summary

strain- & E-field spectroscopy

TLS-resonator coupling

mapping TLS positions

Improve qubit T₁ time

