

Magnifying quantum phase fluctuations ANR MATIONALE DE LA REALE DE with Cooper-pair pairing SIR Smith et al. PRX 2022 Smith & Borgognoni et al. (in preparation)

Zaki Leghtas

MAIRIE DE PARIS

Mines Paris, Inria, ENS, Université PSL, CNRS

W. C. Smith, A. Borgognoni, E. Rover'ch, M. Villiers, A. Marquet, J. Palomo, M. R. Delbecq, T. Kontos, P. Campagne-Ibarcq, B. Douçot, and Z. Leghtas

Protected qubit

Engineering non-local ground-states

Smith et. al PRX 2022

Towards non-local and non-overlapping ground states

Gottesman PRA (2001), Tahn Le PRA (2019), Kalashnikov PRXQ (2020), Larsen PRL (2020) Gyenis PRXQ (2021)

Vion Science 2002, Koch PRA 2007, Manucharyan Science 2009, Pechenezhskiy Nature 2020, Peruzzo PRXQ (2021)

The generalized Josephson element

$$H = 4E_{\rm C} \left(\frac{N}{\mu}\right)^2 + \frac{1}{2}E_{\rm L}(\varphi - \varphi_{\rm ext})^2 - E_{\rm J}\cos(\mu\varphi)$$

$$\cos(\mu\varphi) = \frac{1}{2} \sum_{N=-\infty}^{\infty} \left(|N\rangle \langle N + \mu| + |N + \mu\rangle \langle N| \right)$$

Two-Cooper-pair tunneling elements

Rhombus

Blatter, Geshkenbein, and Ioffe. *PRB* (2001) Gladchenko et al. *Nature Physics* (2009) Douçot and Ioffe. *RPP* (2012)

Bell et al. PRL (2014) Smith et al. *npj Quantum Info* (2020)

Model reduction: Born-Oppenheimer approximation

Target regime :

$$E_L \lesssim \epsilon_L \ll E_J \approx E_C \lesssim \epsilon_c$$

$$arphi_{\Sigma} = rac{1}{2}(arphi_1 + arphi_2)$$

 $arphi_{\Delta} = rac{1}{2}(arphi_1 - arphi_2)$

Model reduction: tight-binding approximation

Low-energy Hamiltonian has two degrees of freedom:

$$H_{\rm n} = 2E_{\rm C}(N_{\Sigma}^2 + N_{\Delta}^2) + \frac{E_{\rm L}\epsilon_{\rm L}}{E_{\rm L} + 2\epsilon_{\rm L}} \left(\varphi_{\Sigma} + \varphi_{\rm ext} + \frac{1}{2}\theta_{\rm ext}\right)^2 + \epsilon_{\rm L}\left(\varphi_{\Delta} - \frac{1}{2}\theta_{\rm ext}\right)^2$$

 $-2E_{\rm J}\cos\varphi_{\Sigma}\cos\varphi_{\Delta}$

$$H_{\pi}^{\text{tight-binding}} = \sum_{s} \frac{E_{\text{L}} \epsilon_{\text{L}}}{E_{\text{L}} + 2\epsilon_{\text{L}}} \left(s\pi + \frac{\pi}{2} + \varphi_{\text{ext}} \right)^{2} |s\rangle \langle s| + \sum_{s} \frac{1}{2} \Gamma(|s\rangle \langle s+1| + |s+1\rangle \langle s|)$$

 $\Gamma = \frac{4}{\sqrt{\pi}} (8E_{\rm J}^3 E_{\rm C})^{1/4} \exp\left(-\sqrt{\frac{8E_{\rm J}}{E_{\rm C}}}\right)$

$$H_{\pi} = E_{\rm C} N^2 + \frac{E_{\rm L} \epsilon_{\rm L}}{E_{\rm L} + 2\epsilon_{\rm L}} (\varphi + \varphi_{\rm ext})^2 + E_{\rm J} \cos 2\varphi$$

Experimental implementation

215 total junctions2 loops3 control lines4 electromagnetic modes

External flux dependance

Flux dispersion measures phase fluctuations

Measured transition energies

Measured transition energies

Exploring a new regime of quantum optics

Spectral signature of high-order photon processes

Smith* & Borgognoni* et. al in preparation

Nonlinear oscillators in superconducting circuits

$$H = \hbar \omega_0 a^{\dagger} a - E_J \cos(\varphi_{zpf}(a + a^{\dagger}))$$

$$\approx \hbar \omega a^{\dagger} a + J_2 (a^{\dagger})^2 a^2 + J_3 (a^{\dagger})^3 a^3 + J_4 (a^{\dagger})^4 a^4 + \cdots$$

Small Josephson energy

 $J_n \propto \varphi_{zpf}^{2n}$

Hriscu & Nazarov PRL (2011), Mehta et al. Nature (2023)

Nonlinear oscillators in superconducting circuits

Time evolution of an initial coherent state

Kirchmair et al. *Nature* (2013)

Spectra of nonlinear oscillators

Hriscu & Nazarov PRL (2011)

Spectra of nonlinear oscillators

Hriscu & Nazarov PRL (2011)

Experimental realization: two technical challenges

1. Large $\varphi_{zpf} \rightarrow$ ultra-high impedance

2. Small $E_J \rightarrow$ ultra-small junction

KITE in the dc-SQUID-like regime* $\epsilon_L \gtrsim E_J$ $\rightarrow \frac{1}{2} \frac{E_J^2}{\epsilon_L} \cos(2\varphi)$

*opposite regime $\epsilon_L \ll E_J$ explored in Smith *et al.* PRX (2022)

Experimental realization: physical device

One aluminum double-angle deposition

Readout resonator vs. flux

Readout resonator vs. flux

Conclusion and perspectives

 \times 10 reduction in flux sensitivity \times 2 magnification of phase fluctuations

- \rightarrow Interlacing spectra
- \rightarrow High order photon-photon interactions

Qubit protected by Cooper-pair pairing (open position)

Smith et al. NPJQI (2020)

Dodge *et al.* arXiv:2303.00625

Closing the metrological triangle

Manucharyan PhD thesis (2012), Shaikhaidarov et al. Nature (2022), Crescini et al. Nature Phys (2023)

The QUANTIC team