Amorphous and polycrystalline routes towards a chiral spin-liquid

AGG, C. Repellin Phys. Rev. Lett. **130**, 186702 (2023)

TOPOMORPH

D. Muñoz-Segovia, et al 2301.02686

Q. Marsal, D. Varjas, AGG PNAS, (2020) Q. Marsal, D. Varjas, AGG Phys. Rev. B (2023)

Adolfo G. Grushin, Néel Institute, CNRS QuanDi — June 8th, 2023

Cécile Repellin LPMMC / Grenoble

Corbae et al, AGG, Lanzara, Hellmann Nat. Materials (2023) Cyocis, Marsal et al, Hellmann, AGG, Lanzara 2302.05945 Review: P. Corbae, et al arXiv: 2301.04176, EPL (2023)

Insulator!

Q

Image: Le Nobel Chevelu

Insulator!

Q

Image: Le Nobel Chevelu

Tang et al. Nature (2019)

Zhang et al. Nature (2019) Tang et al. Nature (2019)

Bi₂Se₃

3D TI

BCB SSB Dirac point BVB

Chen et al Science (2010)

Kx

Topological Materials Database

Ξ

ompound Contains				Only these elements 📃			Excl	Exclude				ICSI	ICSD Number			
Bi Se								eç	eg. 01 N - or -			- or -	eg. 123456			
Show A	dvanc	ed Seard	ch													
	н															
	Li	Be											В	С	N	0
	Na	Mg											Al	Si	Р	s
	к	Ca	Sc	Ti	۷	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se
	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те
	Cs	Ba	La	Hf	Ta	W	Re	0s	lr	Pt	Au	Hg	TI	Pb	Bi	Ро
	Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Мс	Lv
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

92 Entries found for Bi, Se, showing:

		and the second	and the second s
LL (92)	TI (18)	SM (14)	Trivial (60)

Compound	Symmetry Group	Topological Indices	Crossing Type
Bi1 Se1	225 (Fm-3m)		Point
Bi1 Se1	12 (C2/m)	Z _{2w,1} =0, Z _{2w,2} =0, Z _{2w,3} =1, Z ₄ =0	
Bi1 Se1	164 (P-3 <i>m</i> 1)	Z _{2w,1} =0, Z _{2w,2} =0, Z _{2w,3} =1, Z ₄ =0	
Bi1 Se2	12 (C2/m)		
Bi2 Se2	164 (P-3 <i>m</i> 1)	Z _{2w,1} =0, Z _{2w,2} =0, Z _{2w,3} =1, Z ₄ =0	
Bi2 Se3	62 (Pnma)		
Bi2 Se3	166 (<i>R</i> -3 <i>m</i>)	Z _{2w,1} =0, Z _{2w,2} =0, Z _{2w,3} =0, Z ₄ =3	

Search

Type ESFD SEBR SEBR LCEBR

SEBR

LCEBR

SEBR

Topological Materials Database

Ξ

mpound Contains				Only these elements 📃			Exclu	Exclude				ICSI	ICSD Number			
Bi Se							eg. 01 N - or -				- or -	eg. 123456				
Show /	Advance	ed Searc	ch													
	н															
	Li	Ве											В	С	N	0
	Na	Mg											Al	Si	Р	S
	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se
	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те
	Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро
	Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Мс	Lv
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

2 Entries found for **Bi, Se**, showing

		e, showing.	dia
ALL (92)	TI (18)	SM (14)	Trivial (60)

Compound	🗢 Symmetry Group	Topological Indices	Crossing Type
Bi1 Se1	225 (Fm-3m)		Point
Bi1 Se1	12 (C2/m)	Z _{2w,1} =0, Z _{2w,2} =0, Z _{2w,3} =1, Z ₄ =0	
Bi1 Se1	164 (<i>P-</i> 3 <i>m</i> 1)	Z _{2w,1} =0, Z _{2w,2} =0, Z _{2w,3} =1, Z ₄ =0	
Bi1 Se2	12 (C2/m)		
Bi2 Se2	164 (<i>P-</i> 3 <i>m</i> 1)	Topological inva	riants
Bi2 Se3	62 (Pnma)		
Bi2 Se3	166 (<i>R</i> -3 <i>m</i>)	Z _{2w,1} =0, Z _{2w,2} =0, Z _{2w,3} =0, Z ₄ =3	

4

BCB

SSB

BVB

Dirac point

Search

Lr

Type ESFD SEBR SEBR LCEBR

SEBR

LCEBR

SEBR

Topological invariants

Quantized responses

Topological invariants

Quantized responses

Bradlyn et al Nature (2017) Kruthoff et al. Phys. Rev. X (2017) Po et al. Nat. Comm (2017) Song et al. Nat. Comm (2018)

Space Group

Bradlyn et al Nature (2017) Kruthoff et al. Phys. Rev. X (2017) Po et al. Nat. Comm (2017) Song et al. Nat. Comm (2018)

Space Group

— lattice symmetries

translations, rotations, inversions, mirrors

Bradlyn et al Nature (2017) Kruthoff et al. Phys. Rev. X (2017) Po et al. Nat. Comm (2017) Song et al. Nat. Comm (2018)

Space Group

— lattice symmetries

- wavefunctions

translations, rotations, inversions, mirrors

Bradlyn et al Nature (2017) Kruthoff et al. Phys. Rev. X (2017) Po et al. Nat. Comm (2017) Song et al. Nat. Comm (2018)

Orbitals

Space Group

lattice symmetries

- wavefunctions

translations, rotations, inversions, mirrors

Bradlyn et al Nature (2017) Kruthoff et al. Phys. Rev. X (2017) Po et al. Nat. Comm (2017) Song et al. Nat. Comm (2018)

Orbitals

Atomic positions

band connectivity + symmetries labels

Space Group

lattice symmetries

— wavefunctions

translations, rotations, inversions, mirrors

Bradlyn et al Nature (2017) Kruthoff et al. Phys. Rev. X (2017) Po et al. Nat. Comm (2017) Song et al. Nat. Comm (2018)

Orbitals

Atomic positions

band connectivity + symmetries labels

Space Group

lattice symmetries

- wavefunctions

translations, rotations, inversions, mirrors

Bradlyn et al Nature (2017) Kruthoff et al. Phys. Rev. X (2017) Po et al. Nat. Comm (2017) Song et al. Nat. Comm (2018)

Orbitals

Atomic positions

band connectivity + symmetries labels

Vergniory et al. Nature (2019) Zhang et al. Nature (2019) Tang et al. Nature (2019)

Amorphous solids

Topology survives disorder

Bond disorder

Onsite disorder

Some choices

Structural disorder

Topology from disorder

Li et al PRL (2009) Groth et al. PRL (2009)

Onsite disorder

Li et al PRL (2009) Groth et al. PRL (2009)

Li et al PRL (2009) Groth et al. PRL (2009) Fuchs and Vidal PRB (2016) Varjas et al. PRL (2019) Else et al. PRL (2021)

12

Li et al PRL (2009) Groth et al. PRL (2009) Fuchs and Vidal PRB (2016)Brzezinska et al. PRB (2018)Varjas et al. PRL (2019)Else et al. PRL (2021)

Fractals

Li et al PRL (2009) Groth et al. PRL (2009) Fuchs and Vidal PRB (2016) Varjas et al. PRL (2019) Else et al. PRL (2021)

Brzezinska et al. PRB (2018)

Cao et al. Nature (2018)

Synthetic systems:

Theory:

Mitchell, et al. Nat Phys (2018) Agarwala, Shenoy PRL (2017) Xia and Fan PRB (2017) Mansha and Shong PRB (2018)

Exp: Mitchell, et al. Nat Phys (2018)

Synthetic systems:

Theory:

Exp: Mitchell, et al. Nat Phys (2018)

Mitchell, et al. Nat Phys (2018) Agarwala, Shenoy PRL (2017) Xia and Fan PRB (2017) Mansha and Shong PRB (2018)

Synthetic systems:

Theory:

Exp: Mitchell, et al. Nat Phys (2018)

Mitchell, et al. Nat Phys (2018) Agarwala, Shenoy PRL (2017) Xia and Fan PRB (2017) Mansha and Shong PRB (2018) Nash, et al. PNAS (2015)

Synthetic systems:

Theory:

Mitchell, et al. Nat Phys (2018) Agarwala, Shenoy PRL (2017) Xia and Fan PRB (2017) Mansha and Shong PRB (2018) Exp: Mitchell, et al. Nat Phys (2018) Liu et al PRL (2020) Zhou et al Light: Science and App. (2020) Jia, et al Sci. Adv. (2023) Zhang, et al Sci. Advances (2023)

Nash, et al. PNAS (2015)

How do we find topological amorphous solids?

How do we find topological amorphous solids? Any different physics compared to crystals?
How do we find topological amorphous solids? Any different physics compared to crystals?

How do we find amorphous topological insulators?

Space Group

lattice symmetries

— wavefunctions

translations, rotations, inversions, mirrors

Bradlyn et al Nature (2017) Kruthoff et al. Phys. Rev. X (2017) Po et al. Nat. Comm (2017) Song et al. Nat. Comm (2018)

band connectivity + symmetries labels

s, p, d...

How do we find amorphous topological insulators?

Bradlyn et al Nature (2017) Kruthoff et al. Phys. Rev. X (2017) Po et al. Nat. Comm (2017) Song et al. Nat. Comm (2018)

band connectivity + symmetries labels

How do we find amorphous topological insulators?

Space Group

Bradlyn et al Nature (2017) Kruthoff et al. Phys. Rev. X (2017) Po et al. Nat. Comm (2017) Song et al. Nat. Comm (2018)

Orbitals

Atomic positions

band connectivity + symmetries labels

Overlooked topological solids?

solid state: a-Bi₂Se₃

Corbae et al, AGG, Lanzara, Hellmann Nat Materials (2023) Cyocis, Marsal et al, Hellmann, AGG, Lanzara 2302.05945

-10

10

0

φ (deg)

Overlooked topological solids?

Quentin Marsal Néel Institute

Daniel Varjas **MPI PKS**

solid state: a-Bi₂Se₃

Corbae et al, AGG, Lanzara, Hellmann Nat Materials (2023) Cyocis, Marsal et al, Hellmann, AGG, Lanzara 2302.05945

-10

10

Ω

 ϕ (deg)

Overlooked topological solids?

solid state: a-Bi₂Se₃

Corbae et al, AGG, Lanzara, Hellmann Nat Materials (2023) Cyocis, Marsal et al, Hellmann, AGG, Lanzara 2302.05945

Local order = locally similar to crystal

Local order = locally similar to crystal

- Local order = locally similar to crystal
- 1. Fixed coordination (= 3)

- Local order = locally similar to crystal
- 1. Fixed coordination (= 3)
- 2. Similar lattice scales

- Local order = locally similar to crystal
- 1. Fixed coordination (= 3)
- 2. Similar lattice scales

Bond lengths

- Local order = locally similar to crystal
- 1. Fixed coordination (= 3)
- 2. Similar lattice scales

Bond lengths

Toh et al. Nature (2020)

- Local order = locally similar to crystal
- 1. Fixed coordination (= 3)
- 2. Similar lattice scales

3. Crystalline and amorphous regions coexist Toh et al. Nature (2020)

- Local order = locally similar to crystal
- 1. Fixed coordination (= 3)
- 2. Similar lattice scales

3. Crystalline and amorphous regions coexist Toh et al. Nature (2020)

Tian et al. Nature (2023)

- Local order = locally similar to crystal
- 1. Fixed coordination (= 3)
- 2. Similar lattice scales

3. Crystalline and amorphous regions coexist Toh et al. Nature (2020)

4. Lattice disorder can be controlled

Tian et al. Nature (2023)

Any different physics compared to crystals?

How do we find topological amorphous solids?

Can this knob drive a topological transition?

AGG, C. Repellin PRL (2023)

crystal

polycrystal

amorphous

structural disorder

Honeycomb

Kitaev Ann. Phys. (2006)

 $W_p = \sigma_1^x \sigma_2^y \sigma_3^z \sigma_4^x \sigma_5^y \sigma_6^z$

Honeycomb

Kitaev Ann. Phys. (2006)

 $W_p = \sigma_1^x \sigma_2^y \sigma_3^z \sigma_4^x \sigma_5^y \sigma_6^z$

 $\phi_p = \pm 1$

H = -

 $\sum J^{K}_{\alpha}\sigma^{\alpha}_{i}\sigma^{\alpha}_{j}$ $\langle ij \rangle$ $\sigma_j^{\alpha} = i b_j^{\alpha} c_j$

Honeycomb

Kitaev Ann. Phys. (2006)

 $W_p = \sigma_1^x \sigma_2^y \sigma_3^z \sigma_4^x \sigma_5^y \sigma_6^z$

 $H = -\sum_{\alpha} J^{K}_{\alpha} \sigma^{\alpha}_{i} \sigma^{\alpha}_{j} = i\sum_{\alpha} J^{K}_{\alpha} u^{\alpha}_{ij} c_{i} c_{j}$ $\langle ij \rangle$ $\langle ij \rangle$ $\sigma_j^{\alpha} = i b_j^{\alpha} c_j$

Honeycomb

Kitaev Ann. Phys. (2006)

 $W_p = \sigma_1^x \sigma_2^y \sigma_3^z \sigma_4^x \sigma_5^y \sigma_6^z$

 $H = -\sum_{\alpha} J_{\alpha}^{K} \sigma_{i}^{\alpha} \sigma_{j}^{\alpha} = i \sum_{\alpha} J_{\alpha}^{K} u_{ij}^{\alpha} c_{i} c_{j}$ $\langle ij \rangle$ $\langle ij \rangle$ $u_{ij}^{\alpha} \equiv i b_i^{\alpha} b_j^{\alpha}$ $\sigma_j^{\alpha} = i b_j^{\alpha} c_j$

Honeycomb

Kitaev Ann. Phys. (2006)

 $W_p = \sigma_1^x \sigma_2^y \sigma_3^z \sigma_4^x \sigma_5^y \sigma_6^z$

 $H = -\sum J_{\alpha}^{K} \sigma_{i}^{\alpha} \sigma_{j}^{\alpha} = i \sum J_{\alpha}^{K} u_{ij}^{\alpha} c_{i} c_{j}$ $\langle ij \rangle$ $\langle ij \rangle$ $u_{ij}^{\alpha} \equiv i b_i^{\alpha} b_j^{\alpha}$ $\sigma_j^{\alpha} = i b_j^{\alpha} c_j$ $\mathcal{U}_{ij} = \pm 1$ $\phi_p =$ ij∈p

Honeycomb

Kitaev Ann. Phys. (2006)

 $W_p = \sigma_1^x \sigma_2^y \sigma_3^z \sigma_4^x \sigma_5^y \sigma_6^z$

 $\phi_p = \pm 1$

Lieb PRL 1994

Honeycomb

Kitaev Ann. Phys. (2006)

 $W_p = \sigma_1^x \sigma_2^y \sigma_3^z \sigma_4^x \sigma_5^y \sigma_6^z$

 $\phi_p = \pm 1$

H =

Lieb PRL 1994

H = Majorana's hopping in a graphene lattice without flux

Gapless spin liquid

H =

Lieb PRL 1994

H = Majorana's hopping in a graphene lattice without flux

Honeycomb

Kitaev Ann. Phys. (2006)

Honeycomb

Kitaev Ann. Phys. (2006)

Х Х $\mathbf X$ \mathbf{Z} \mathbf{V} Х Х W_p σ_{Ξ}^{y} \mathbf{Z} \mathbf{X} \mathbf{X} X \mathbf{X} $W_p = \sigma_1^x \sigma_2^y \sigma_3^z \sigma_4^x \sigma_5^y \sigma_6^z$ Gapped spin liquid $\phi_p = \pm 1$ Jy Gapless spin liquid

Yao and Kivelson PRL (2007)

Decorated Honeycomb

Honeycomb

Kitaev Ann. Phys. (2006)

Х \mathbf{X} Х \mathbf{Z} Х Х W_p σ^y_{ϵ} ${
m Z}$ \mathbf{Z} \mathbf{X} Х \mathbf{X} \mathbf{X} $W_p = \sigma_1^x \sigma_2^y \sigma_3^z \sigma_4^x \sigma_5^y \sigma_6^z$ Gapped spin liquid $\phi_p = \pm 1$ ЈУ Gapless spin liquid

Decorated Honeycomb

Yao and Kivelson PRL (2007)

Honeycomb

Kitaev Ann. Phys. (2006)

Х Х \mathbf{X} \mathbf{V} Х Х Х W_p σ^{i} ${
m Z}$ \mathbf{Z} \mathbf{X} Х \mathbf{X} \mathbf{X} $W_p = \sigma_1^x \sigma_2^y \sigma_3^z \sigma_4^x \sigma_5^y \sigma_6^z$ Gapped spin liquid $\phi_p = \pm 1$ ЈУ Gapless spin liquid

Yao and Kivelson PRL (2007)

Decorated Honeycomb

Pentaheptite lattice

Peri et al PRB (2020)

Honeycomb

Kitaev Ann. Phys. (2006)

Х \mathbf{X} W_p σ_{r}^{y} ${
m Z}$ Х \mathbf{X} X $W_p = \sigma_1^x \sigma_2^y \sigma_3^z \sigma_4^x \sigma_5^y \sigma_6^z$ Gapped spin liquid $\phi_p = \pm 1$ JY Gapless spin liquid

Yao and Kivelson PRL (2007)

Decorated Honeycomb

Pentaheptite lattice

Peri et al PRB (2020)

Odd plaquettes break TRS

Honeycomb

Kitaev Ann. Phys. (2006)

 W_p \mathbf{Z} Х $W_p = \sigma_1^x \sigma_2^y \sigma_3^z \sigma_4^x \sigma_5^y \sigma_6^z$ Gapped spin liquid $\phi_p = \pm 1$ JУ Gapless spin liquid

Yao and Kivelson PRL (2007)

Odd plaquettes break TRS

Decorated Honeycomb

Pentaheptite lattice

Peri et al PRB (2020)

Gapped chiral spin-liquid!

= chiral majorana edge states non-abelian excitations
G. Casella et al 2208.08246

Lattice

Groundstate

G. Casella et al 2208.08246

Lattice

Groundstate

LDOS

G. Casella et al 2208.08246

Lattice

Groundstate

LDOS

Local Chern marker

Bianco and Resta, PRB (2011)

$C(\mathbf{r}) = 2\pi \operatorname{Im}\langle \mathbf{r} | [Q\hat{x}, P\hat{y}] | \mathbf{r} \rangle$

G. Casella et al 2208.08246

Lattice

Groundstate

LDOS

Local Chern marker

Bianco and Resta, PRB (2011)

$C(\mathbf{r}) = 2\pi \operatorname{Im}\langle \mathbf{r} | [Q\hat{x}, P\hat{y}] | \mathbf{r} \rangle$

Chiral spin-liquid!

= chiral majorana edge states non-abelian excitations

Voronization

Voronization

Voronization

structural disorder

Voronization

structural disorder

Controlled Voronization

crystal

polycrystal

amorphous

J^Kv

 n_{odd}

J^Kv

 n_{odd}

 n_{odd}

 n_{odd}

AGG, C. Repellin PRL (2023)

 n_{odd}

 n_{odd}

JK

 n_{odd}

AGG, C. Repellin PRL (2023)

 n_{odd}

AGG, C. Repellin PRL (2023)

 n_{odd}

 n_{odd}

AGG, C. Repellin PRL (2023)

 n_{odd}

 n_{odd}

AGG, C. Repellin PRL (2023)

Spin-chirality

Spin-chirality

local spin-chirality $\langle \hat{\chi}_l \rangle = \langle \hat{\chi}_{ilj} \rangle + \langle \hat{\chi}_{jlk} \rangle + \langle \hat{\chi}_{kli} \rangle$

 $\hat{\chi}_{ijk} = \mathbf{S}_i \cdot \left(\mathbf{S}_j \times \mathbf{S}_k\right)$

Spin-chirality

local spin-chirality $\langle \hat{\chi}_l \rangle = \langle \hat{\chi}_{ilj} \rangle + \langle \hat{\chi}_{jlk} \rangle + \langle \hat{\chi}_{kli} \rangle$

crystal

 $\hat{\chi}_{ijk} = \mathbf{S}_i \cdot \left(\mathbf{S}_j \times \mathbf{S}_k\right)$

amorphous

How stable is it?

Kitaev + Heisenberg $H = J^{K} \sum_{\langle ij \rangle} \sigma_{i}^{\alpha} \sigma_{j}^{\alpha} + J^{H} \sum_{\langle ij \rangle} \sigma_{i} \cdot \sigma_{j}$

Kitaev + Heisenberg $H = J^{K} \sum_{\langle ij \rangle} \sigma_{i}^{\alpha} \sigma_{j}^{\alpha} + J^{H} \sum_{\langle ij \rangle} \sigma_{i} \cdot \sigma_{j}$

 $J^H = \cos \phi, J^K = \sin \phi$

Rau et al Ann. Rev. Cond. Mat. Phys. (2015)

Kitaev + Heisenberg $H = J^{K} \sum_{\langle ij \rangle} \sigma_{i}^{\alpha} \sigma_{j}^{\alpha} + J^{H} \sum_{\langle ij \rangle} \sigma_{i} \cdot \sigma_{j}$

 $J^H = \cos \phi, J^K = \sin \phi$

Rau et al Ann. Rev. Cond. Mat. Phys. (2015)

Kitaev + Heisenberg $H = J^{K} \sum \sigma_{i}^{\alpha} \sigma_{j}^{\alpha} + J^{H} \sum \sigma_{i} \cdot \sigma_{j}$ $\langle ij \rangle$ $\langle ij \rangle$

 $J^H = \cos \phi, J^K = \sin \phi$

Rau et al Ann. Rev. Cond. Mat. Phys. (2015)

26 spins, 6 plaquettes

Exact diagonalization

Kitaev + Heisenberg $H = J^{K} \sum \sigma_{i}^{\alpha} \sigma_{j}^{\alpha} + J^{H} \sum \sigma_{i} \cdot \sigma_{j}$ $\langle ij \rangle$ $\langle ij \rangle$

26 spins, 6 plaquettes

 $J^H = \cos \phi, J^K = \sin \phi$

Rau et al Ann. Rev. Cond. Mat. Phys. (2015)

Exact diagonalization

Kitaev + Heisenberg $H = J^{K} \sum_{\langle ij \rangle} \sigma_{i}^{\alpha} \sigma_{j}^{\alpha} + J^{H} \sum_{\langle ij \rangle} \sigma_{i} \cdot \sigma_{j}$

 $J^H = \cos \phi, J^K = \sin \phi$

Rau et al Ann. Rev. Cond. Mat. Phys. (2015)

Exact diagonalization

26 spins, 6 plaquettes

Kitaev + Heisenberg $H = J^{K} \sum \sigma_{i}^{\alpha} \sigma_{j}^{\alpha} + J^{H} \sum \sigma_{i} \cdot \sigma_{j}$ $\langle ij \rangle$ $\langle ij \rangle$

26 spins, 6 plaquettes

E02 $\sum 1000$

 $J^H = \cos \phi, J^K = \sin \phi$

Rau et al Ann. Rev. Cond. Mat. Phys. (2015)

Exact diagonalization

Engineering structural disorder?

focused ion beam

see A. Bake et al **14**, Nat. Comm 1693 (2023)

Local Chern marker

crystalline

amorphous

Engineering structural disorder?

focused ion beam

see A. Bake et al **14**, Nat. Comm 1693 (2023)

quantised thermal Hall: Reed and Green PRB (2000)

Local Chern marker

AGG, C. Repellin Phys. Rev. Lett. **130**, 186702 (2023)

D. Muñoz-Segovia, et al 2301.02686

Q. Marsal, D. Varjas, AGG PNAS, (2020) Q. Marsal, D. Varjas, AGG Phys. Rev. B (2023)

Cécile Repellin LPMMC / Grenoble

AGG, C. Repellin Phys. Rev. Lett. **130**, 186702 (2023)

D. Muñoz-Segovia, et al 2301.02686

Q. Marsal, D. Varjas, AGG PNAS, (2020) Q. Marsal, D. Varjas, AGG Phys. Rev. B (2023)

Cécile Repellin LPMMC / Grenoble

amorphous Kitaev lattice = gapped chiral spin-liquid

AGG, C. Repellin Phys. Rev. Lett. **130**, 186702 (2023)

D. Muñoz-Segovia, et al 2301.02686

Q. Marsal, D. Varjas, AGG PNAS, (2020) Q. Marsal, D. Varjas, AGG Phys. Rev. B (2023)

Cécile Repellin LPMMC / Grenoble

amorphous Kitaev lattice = gapped chiral spin-liquid

75% max gap size at 30% of odd-plaquettes (~a-graphene)

AGG, C. Repellin Phys. Rev. Lett. **130**, 186702 (2023)

D. Muñoz-Segovia, et al 2301.02686

Q. Marsal, D. Varjas, AGG PNAS, (2020) Q. Marsal, D. Varjas, AGG Phys. Rev. B (2023)

Cécile Repellin LPMMC / Grenoble

amorphous Kitaev lattice = gapped chiral spin-liquid

75% max gap size at 30% of odd-plaquettes (~a-graphene)

chiral QSL as robust as gapless QSL