Disorder in Andreev Reflection of a Quantum Hall Disorder in Andreev Reflection of a Quantum Hall Edge State Edge State

L.I. Glazman Yale University

Vlad Kurilovich, Zach Raines

Vlad Kurilovich, Zach Raines, LG -- Nature Comm. (2023)**14**:237 **Vlad Kurilovich**, LG -- arXiv:2209.12932

Les Houches June 2023

Outline

- Notion of Andreev reflection (AR)
- Andreev reflection off an "ideal" superconductor
- Disorder-induced randomness in Andreev reflection, single ν=2 edge
- Effect of magnetic vortices in superconductor
- Conductance distribution function and parametric correlations, $v=2$ single edge
- Quantum criticality of counter-propagating n=1 edges coupled by "dirty" supercond.
- Conclusions

Notion of Andreev reflection

A.F. Andreev (1964) [in the context of the intermediate state properties of a type-I superconductor]

Andreev reflection off a flat interface

Semiclassical picture of AR: real-space trajectories

From: Krylov and Sharvin, JETP 1973

Visualizing semiclassical trajectories by magnetic focusing

From: van Houten et al, Europhys Lett 1988 $2DEG$ \overleftrightarrow{W} \overline{W} \times B PVVV 4000 mK Collector voltage, a.u. Ω 1300 mK $\overline{0}$ 550 mK 30 mK -0.4 -0.2 $\boldsymbol{0}$ 0.2 0.4 $\mathbf{0}$. B, T

Bozhko, Tsoi, Yakovlev, JETP Lett 1983

Magnetic focusing + Andreev reflection in graphene

From: Bhandari,…, Kim, Westervelt, NanoLett 2020

Orbits quantization, no disorder

edge of 2D: Skipping orbits

$$
\Phi' = n\Phi_0
$$

$$
\varepsilon_n \equiv \varepsilon_n(k_x)
$$

set of 1D spectra (edge states)

Quantization of particle-hole orbits, no disorder

An effective proximitization would need a fine-tuning

 \ldots of the chemical potential (μ)

Experiment: no fine-tuning needed for Andreev refl. (AR)

Schematics of the experiment, Zhao et al, Nat Phys 2020

$$
G=0
$$

Normal state Superconducting state $G < 0$ hole $G>0$ electron

Experiment: no fine-tuning needed for AR

- Sign-alternating signal at low *T*
- Mesoscopic fluctuations, \sim 50/50
- Switches in the fluctuations pattern with *B*

Amplitude of AR off a disordered superconductor

random outcome (p-h) and random phase

Randomness of the scattering amplitude

Amplitude=Sum over random diffusive trajectories; random outcome (p-h) and random phase of the amplitude

Tunnel barrier (conductance *g* per unit length) $A_{\rm tot} = \sum_i A_i$, $A_i \sim t^2 e^{i k_F \ell_i} \sim g e^{i k_F \ell_i}$ random $\langle A_{\rm tot} \rangle = \sum_i \langle A_i \rangle = 0$ but $\langle |A_{\text{tot}}|^2 \rangle = \sum_{ii} \langle A_i A_j^* \rangle = \sum_i \langle |A_i|^2 \rangle \neq 0$

The dirtier, the better (more trajectories return to region $\sim \xi$ of the interface) and the interface of the interface

Andreev reflection of Hall edge state: a short segment

 $G_Q = 2e^2/h$, σ : normal-state conductivity of the superconductor $q = 2\pi G_O t^2 (\partial_u \Phi)^2 \nu p_F/(\hbar^2 v_{\text{edge}})$

Conductance of a short Hall edge segment

 \prod

In general, $G = G_Q(|A_{ee}|^2 - |A_{eh}|^2)$ $= G_Q(1-2|A_{eh}|^2)$ $|A_{ee}|^2 + |A_{eh}|^2 = 1$ $\langle G \rangle = G_O(1 - 2L/\ell_A)$

$$
\langle G^2 \rangle - \langle G \rangle^2 = 4 G_Q^2 L^2 / \ell_A^2
$$

 $G_Q = 2e^2/h$,

 σ : normal-state conductivity of the superconductor $g = 2\pi G_O t^2 (\partial_u \Phi)^2 \nu p_F/(\hbar^2 v_{\text{edge}})$

Conductance of a long edge

Evolution of the wave function along the edge:

$$
i\frac{\partial}{\partial x}\begin{pmatrix}a_{e}(x)\\a_{h}(x)\end{pmatrix} = \begin{pmatrix}-\vartheta(x)&\alpha^{\star}(x)\\ \alpha(x)&\vartheta(x)\end{pmatrix}\begin{pmatrix}a_{e}(x)\\a_{h}(x)\end{pmatrix}
$$

Mapping on a random walk over a Bloch sphere

Evolution of the wave function along the edge:

Evolution of the wave function along the edge:

Evolution of the wave function along the edge: of a "spin" on a Bloch sphere:
 (a)

$$
i\frac{\partial}{\partial x}\begin{pmatrix} a_{\rm e}(x) \\ a_{\rm h}(x) \end{pmatrix} = \begin{pmatrix} -\vartheta(x) & \alpha^*(x) \\ \alpha(x) & \vartheta(x) \end{pmatrix} \begin{pmatrix} a_{\rm e}(x) \\ a_{\rm h}(x) \end{pmatrix} \begin{pmatrix} a_{\rm e}(x) = \cos(\theta(x)/2) \\ a_{\rm h}(x) = e^{i\phi(x)}\sin(\theta(x)/2) \\ \alpha(x)\alpha^*(x') = \sqrt{\vartheta(x)\vartheta(x')} = \frac{1}{\ell_A}\delta(x-x') \quad \text{stochastic "magnetic field"}
$$

Conductance distribution function

Evolution of the wave function along the edge: Parametrization by coordinates

$$
i\frac{\partial}{\partial x}\begin{pmatrix} a_{e}(x) \\ a_{h}(x) \end{pmatrix} = \begin{pmatrix} -\vartheta(x) & \alpha^{\star}(x) \\ \alpha(x) & \vartheta(x) \end{pmatrix} \begin{pmatrix} a_{e}(x) \\ a_{h}(x) \end{pmatrix} \begin{pmatrix} a_{e}(x) = \cos(\theta(x)/2) \\ a_{h}(x) = e^{i\phi(x)}\sin(\theta(x)/2) \end{pmatrix}
$$

$$
\langle \alpha(x)\alpha^{\star}(x') \rangle = \langle \vartheta(x)\vartheta(x') \rangle = \frac{1}{\ell_{A}}\delta(x - x') \quad \text{stochastic "magnetic field"}
$$

 $G = G_Q \cos \theta(L)$

$$
\langle G \rangle = G_Q e^{-2L/\ell_A}
$$

of a "spin" on a Bloch sphere:

$$
\frac{\partial \mathcal{P}(\theta, \phi|x)}{\partial x} = \frac{1}{\ell_A} \left(\Delta_{\theta, \phi} + \partial_{\phi}^2 \right) \mathcal{P}(\theta, \phi|x)
$$
\n(Fokker-Planck eq.)\n
\n[$L/\ell_A \gg 1$
\n $\langle G \rangle = 0, \langle \langle G^2 \rangle \rangle = G_Q^2/3$

Conductance distribution function

Trace of conductance vs. 2DEG density for a fixed realization of disorder

 $G_{\text{max}}=G_Q$ in the absence of vortices

Effect of electron loss to vortex cores

Parametric correlations of conductance

 $\mathcal{C}(\delta n) = \langle \langle G(n) \cdot G(n + \delta n) \rangle \rangle_n$
 $E(k) \qquad \delta n \to \delta k_{\mu}$

$$
i\frac{\partial}{\partial x}\begin{pmatrix}a_{e}(x)\\a_{h}(x)\end{pmatrix} = \begin{pmatrix}-\vartheta(x) & \alpha^{\star}(x)\\ \alpha(x) & \vartheta(x)\end{pmatrix}\begin{pmatrix}a_{e}(x)\\a_{h}(x)\end{pmatrix}
$$

$$
\alpha(x) \to \alpha(x) \cdot e^{2i\delta k_{\mu}x}
$$

$$
\mathcal{C}(\delta n) = \langle \langle G^2 \rangle \rangle \cdot \exp\left[-\frac{4}{3} \left(\frac{\delta n}{n_{\text{cor}}} \right)^2 \right], \quad n
$$

$$
n_{\rm cor}=\frac{\partial n \, \hbar v_{\rm edge}}{\partial \mu \, \sqrt{\ell_A L}}
$$

Similar to motional narrowing in NMR

Random jumps of conductance due to vortex entrance

Newer experiment, arXiv:2210.0482

Figure 4: Distribution function of P_{eh} . (a) Histograms of P_{eh} collected in a 100 mT window around 1.45 T on the $\nu = 2$ plateau at various temperatures. Here, $L = 1 \mu m$. (b) Replot of (a) with *(riangular)* distribution fits (lines). The y-axis is offset by 1 for each temperature

Instead of rectangular (flat) in theory Possible Mundane: vortex $\begin{matrix}5.36\end{matrix}$ $\begin{matrix}11\end{matrix}$ $\begin{matrix}6\end{matrix}$ $\begin{matrix}6\end{matrix}$ $\begin{matrix}8\end{matrix}$ $\begin{matrix}6\end{matrix}$ $\begin{matrix}6\end{matrix}$ $\begin{matrix}6\end{matrix}$ $\begin{matrix}6\end{matrix}$ $\begin{matrix}6\end{matrix}$ $\begin{matrix}6\end{matrix}$ $\begin{matrix}6\end{matrix}$ $\begin{matrix}6\end{matrix}$ $\begin{matrix}6\end{matrix}$ $\begin{matrix$ Mundane: vortex reasons for discrepancy: spatial separation of edge states -200 3.05 3.1 $B(T)$

Proximity-coupled counter-propagating ν**=1 edges**

Proximity-coupled counter-propagating ν**=1 edges**

The reality is different: (1) normal tunneling along with CAR; (2) disorder.

$$
H_{\rm N} = \int dx \left(t_N(x) \psi_R^{\dagger} \psi_L + \text{h.c.} \right) ; \qquad H_{\rm CAR} = \int dx \left(\Delta(x) \psi_R^{\dagger} \psi_L^{\dagger} + \text{h.c.} \right)
$$

\n
$$
\xrightarrow{\Delta(x) \rightarrow \delta A_{\rm A}} \qquad \text{Only } \delta A_{\rm A}(x) \mapsto \text{top. superconductor}
$$

\n
$$
\xrightarrow[t_N(x) \rightarrow \delta A_{\rm N}]{} \qquad \text{Only } \delta A_{\rm N}(x) \mapsto \text{insulator (Anderson localization)}
$$

\n
$$
\langle |\delta A_{\rm A/N}|^2 \rangle = \frac{\delta L}{l_{\rm A/N}}; \quad \text{in general, } \frac{1}{l_{\rm N}} \ge \frac{1}{l_{\rm A}} \quad \text{(insulator wins)}
$$

\n
$$
\frac{1}{l_{\rm N}} = \frac{1}{l_{\rm A}} \text{ at } \tau_{\rm so} \Delta \ll 1 \text{ and } E \rightarrow 0 \quad \text{(critical state)}
$$

Proximity-coupled counter-propagating ν**=1 edges**

$$
\langle |\delta A_{A/N}|^2 \rangle = \frac{\delta L}{l_{A/N}}; \qquad \frac{1}{l_N} = \frac{1}{l_A} \text{ at } \tau_{\text{so}} \Delta \ll 1 \text{ and } E \to 0
$$

Microsoft calculation:
$$
\frac{1}{l_N} = \frac{1}{l_A} \equiv \frac{1}{2l_0}; \ \frac{1}{2l_0} = \frac{4\pi g^2}{G_O \sigma} \sqrt{\frac{\pi \xi}{2d}} e^{-d/\xi}
$$

Transport problem: scattering matrix

$$
i\frac{dS}{dx} = -\frac{2(E+i\Gamma)}{v}S + \mathcal{U} + S\mathcal{U}^{\dagger}S + \dots
$$

electron loss to vortex cores

 $U: 2x2$ matrix (Nambu space), linear in random amplitudes $\delta A_{\rm N}, \delta A_{\rm A}$

A particularly convenient parameterization of the Smatrix for analyzing Eq. (9) is

$$
S = \frac{1}{2} \begin{pmatrix} F_{+}(w_{1}, w_{2})e^{i\alpha} & F_{-}(w_{1}, w_{2})e^{i\phi} \\ F_{-}(w_{1}, w_{2})e^{-i\phi} & F_{+}(w_{1}, w_{2})e^{-i\alpha} \end{pmatrix}, \qquad (11a) \text{ Using this parameterization in Eq. (9), we obtain a sys-\ntem of equations governing the evolution of } w_{1}, w_{2}, \alpha,
$$

\n
$$
F_{\pm}(w_{1}, w_{2}) = -\tanh w_{1} + \frac{i}{\cosh w_{1}}
$$
\n
$$
\pm \operatorname{sign}(w_{1} - w_{2}) \Big[-\tanh w_{2} + \frac{i}{\cosh w_{2}} \Big]. \qquad (11b) \qquad \begin{aligned} \frac{dw_{1}}{dx} &= \frac{2E}{v} \cosh w_{1} + \eta_{Nx} \sin \alpha - \eta_{Ny} \cos \alpha \\ &+ \eta_{Ax} \sin \phi - \eta_{Ay} \cos \phi, \qquad (12a) \\ \frac{dw_{2}}{dx} &= \frac{2E}{v} \cosh w_{2} + (\eta_{Nx} \sin \alpha - \eta_{Ny} \cos \alpha \\ &- \eta_{Ax} \sin \phi + \eta_{Ay} \cos \phi) \sin(w_{1} - w_{2}), \qquad (12b) \end{aligned}
$$
\n
$$
\frac{d\alpha}{dx} = \vartheta_{\text{R}} + \vartheta_{\text{L}} + q(w_{1}, w_{2}) (\eta_{Nx} \cos \alpha + \eta_{Ny} \sin \alpha), \qquad (12c) \qquad \begin{aligned} \frac{d\alpha}{dx} &= \vartheta_{\text{R}} - \vartheta_{\text{L}} - q(w_{2}, w_{1}) \sin(w_{1} - w_{2}) \\ &\times (\eta_{Ax} \cos \phi + \eta_{Ay} \sin \phi). \end{aligned}
$$

First two equations can be reduced to Langevin-like equations

$$
\frac{dw_i}{dx} = -\frac{\partial U(w_1, w_2)}{\partial w_i} + \tilde{\eta}_i(x)
$$

Competition of $\delta A_{\rm N}, \delta A_{\rm A}$, signature of criticality in DOS

 $\mathcal{U}:$ 2x2 matrix (Nambu space), linear in random amplitudes $\delta A_{\rm N}, \delta A_{\rm A}$

$$
\langle |\delta A_{A/N}|^2 \rangle = \frac{\delta L}{l_{A/N}}; \text{ allow for } l_{A/N} = 2l_0(1 \pm \lambda); |\lambda| \ll 1 \rightarrow \frac{dN}{dE} \equiv \nu(E) \propto \frac{1}{E^{1-2|\lambda|}}
$$

 $\nu(E) \propto \frac{1}{E \ln^3(v/E l_0)}$

Dyson singularity, indicative of the "infinite randomness" critical point at λ =0
Brouwer et al, 2011; Motrunich et al, 2001

Zero-bias conductance at the critical point (λ**=0)**

at $\Gamma=0$ conductance distribution function

$$
P(G) = \frac{1}{2} \big[\delta(G + G_Q) + \delta(G - G_Q) \big]
$$

in the practical case (vortices present) $\Gamma \gg v/l_0$

$$
P(G) = \frac{1}{G_Q} \frac{4\Gamma l_0}{v} \exp\left[-\frac{8\Gamma l_0}{v} \frac{|G|}{G_Q}\right]
$$

Other cool stuff, which was left out from this talk: --Predictions for finite-bias conductance --Predictions for conductance correlation functions

Parametric correlations of conductance

Conductance correlation function does not decay to zero

Negative value of conductance may be "robust" wrt to the 2D electron density variation

Parametric correlations of conductance

Negative value of conductance "robust" wrt to the 2D electron density variation may (?) explain experiment

[Gil-Ho Lee et al., 2017]

Conclusions

Characteristic length of **random** electron-hole conversion

Single edge: conductance values defined by random walk on a Bloch sphere

Dual role of vortices: (1) shrinking the Bloch sphere – qualitatively explains the experimental observation, but the form of the conductance distr. function remains unexplained

Conclusions

Dual role of vortices: (2) Conductance jumps upon a vortex entrance

Parametric correlations of conductance with varying 2DEG density and magnetic field

Proximity-coupled counter-propagating $\nu = 1$ edges are **naturally tuned to the quantum critical point** between a topological superconductor and insulator;

A **possible** explanation of a stable G<0, calls for new experiments!!!

We make **quantitative predictions for the linear and nonlinear conductance**

[Gil-Ho Lee et al., 2017]