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Outline

• Why energy resolving detectors for visible/near-infrared/mid-infrared?
• Working principle – based on Aluminium detectors

• Measurement and pulse analysis
• Energy resolution limits

• Quasiparticle dynamics in MKIDs
• Equilibrium and non-equilibrium dynamics
• Role of phonons and phonon-trapping
• Quasiparticle trapping

• MKIDs with disordered superconductors
• Quasiparticle dynamics in a disordered superconductor
• Open questions (some of them)
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Characterizing Earth-like exoplanets with MKIDs

Integral Field Units IR single photon detectors Chromatic wavefront sensors

Single photon color resolution 
without dark counts or read 

noise

Modular detector arrays for 
mid-IR interferometer outputs 

(LIFE)

Real time photon counting 
with microsecond arrival 

timing and color information



• 1010 larger signal from star than planet => null the star
• Still only <1 photon/second from planet
• Detector required with zero noise and R~100

x1010

Breath analysis: a spectrum of the planet’s light



Wavefront sensing

Wavefront errors
• Are chromatic
• Change quickly (~ ms)
• Need a guide star/source 

which can be faint

Wavefront sensing can be 
improved by a detector which is:
• Read out real time
• Color resolving
• Photon counting
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Light from telescope

Deformable mirror

Beam splitter

MKID detector Focal plane
Detector

Controller
Pyramid

Distorted 
wavefront

Corrected wavefront



Semiconductor: bandgap ~1 eV => 1 electron per photon 
Superconductor: gap <1 meV => 1000’s of ‘electrons’ per 
photon

<1 meV

Semiconductor Superconductor
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1 eV

Semiconducting vs superconducting detector



Semiconductor: bandgap ~1 eV => 1 electron per photon 
Superconductor: gap <1 meV => 1000’s of electrons per 
photon

Main advantages:
- Colour information preserved - spectroscopy
- No dark-current and no read-noise

Other useful properties:
- Real time readout of the pixels (timing information)
- Can be used for any wavelength above gap frequency
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Semiconducting vs superconducting detector



MKIDs, 2 main flavours
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Distributed (CPW) resonator with 
antenna for far-infrared

Lumped element resonator.
2 possibilities for inductor:
- Smaller than wavelength (THz, sub-mm)
- (much) larger than wavelength (visible, near-IR)

Design: Kevin Kouwenhoven



MKIDs – operation principle

Microwave Kinetic Inductance Detector



Microwave Kinetic Inductance Detector

MKIDs – operation principle

Δ phonon

Day et al. Nature 2003



Responsitivity to quasiparticles
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MKID detector – sensitivity in power or in photon energy

spectrum

Power integrating

Photon counting
+ Energy resolving
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Background + source
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MKID detector – sensitivity in power or in photon energy

Far-infrared/sub-mm
- Low photon energy
- Many photons / time
- Power detection = 

change in average signal
- Sensitivity => detect tiny 

amount of power

Visible/near-infrared
- High photon energy
- Less photons / time
- Photon detection = Pulse for 

every single photon
- Pulse height => photon energy
- Sensitivity => detect small 

changes on top of a large pulse
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MKID detector – colour information

spectrum

• Energy resolution  =>  zero dark current and read noise

• Pulse decay time: quasiparticle recombination time (~100 us)

• Pulse rise time: resonator ring-time  τ =
Q

π fres



1000-2.000 pixels/coax cable pair

Here you see the trade-off #pixels vs speed (= bandwidth)!

Multiplexed readout



VIS/NIR MKID instruments

• Wavefront sensing with colour sensitivity
• Fringe tracking (on faint sources)
• Spectroscopy
• Time-dependency 
• Fluorescence problems in biophysics
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More information:
DARKNESS: Meeker et al, PASP 130 065001 (2018), arXiv:1803.10420x
MEC: Walter et al, PASP 132, 125005 (2020), arXiv:2010.12620

https://arxiv.org/abs/1803.10420
https://arxiv.org/abs/2010.12620


Resolving power / energy resolution
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Resolving power / energy resolution

How do we get from single photon hits to a spectrum?
• How do we measure R?
• What limits R?
• How do we overcome these limits?
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673 nm

653 nm

R = 50



How do we measure energy resolution?

• Hybrid NbTiN/Al MKID, with small Al 
volume as sensitive element

• This is not an efficient detector, but 
very sensitive
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Setup – fiber or window illumination

Incoming light

Window/filter or fiber + collimator

6 coax cables
3x input
3x output

Window/filter

Detector chip

Cryophy shield
Superconducting Nb shield

Commercial dilution refrigerator, T>18 mK, typically 100-120 mK for MKIDs. 
Interior engineered and produced at SRON.



Time trace of KID response with continuous 673 nm illumination



Pulse analysis
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Template

Individual pulse

Note: we plot PSDs here where optimal filter uses FTs

Useful 
Bandwidth



Energy resolution of Al KIDs on sapphire
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What can limit the energy resolution in MKIDs?
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Signal / noise
• Volume (low)
• Q-factor (high)
• Kinetic inductance (high)
• Efficiency of creating quasiparticles from 

photon energy
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Signal / noise

• Amplifier
• Dielectric two-level-systems
• Generation-recombination of quasiparticles

26

Time

R
es

po
ns

e



• Convert 1-3 eV excitation into few thousand ~0.2 meV quasiparticle excitations
• Electron-phonon interaction
• Hot phonon loss
• Fano statistics in best case

Role of phonons
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• Statistical limit on how many quasiparticles are created from same photon energy
• Lower gap is the only tunable parameter

Fano limit

R = 1
2 2ln(2)

ηE
FΔ
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How do we know which mechanism is limiting?
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Resolving power Al MKID on substrate
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Phonon recycling with membrane
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50 nm Alumunium film on 110 nm SiN membrane

Factor >7 better trapping than substrate. 
31

MKID material

Membrane



Trap phonons
• 50 nm Al film
• 110 nm SiN membrane with 2.2 micron Al strip – aspect ratio
• Geometric retrapping model, factor ~7 longer phonon dwell time
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Al strip 2.2 um

Membrane

NbTiN

Substrate KID



Measured histogram resolution substrate - membrane
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Higher is better
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Dominated by Fano fluctuations

Want to know more?: Physical Review Applied 16, 034051 (2021)

https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.16.034051


Proof: we can resolve close spectral lines
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673 nm

653 nm

R = 50

Combination of laser line and a monochromator
Best measured resolving power (at 673 nm)



Very similar Al device is the most sensitive far-infrared MKID

35
Astronomy&Astrophysics 665, A17 (2022)



Very similar Al device is the most sensitive far-infrared MKID
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Astronomy&Astrophysics 665, A17 (2022)



Quasiparticle dynamics probed with MKIDs

• Generation and recombination of quasiparticles
• Equilibrium (steady state) vs non-equilibrium
• Strong vs weak phonon trapping (membranes)
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Quasiparticle dynamics
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Simple picture

• Nqp and lifetime are connected
• Saturation = excess quasiparticles
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Phys. Rev. Lett. 106, 167004 (2011)
Nature Communications 5, 3130 (2014)

Kaplan et al. Phys. Rev. B 14, 4854–487 (1976)
Wilson, Prober, Phys. Rev. B. 69, 094524 (2004)



Quasiparticle number and lifetime are disconnected, still Alu

40De Rooij et al, Phys. Rev. B 104, L180506 (2021)

More sensitive device than before, less excess quasiparticles



Quasiparticle number and lifetime are disconnected

41De Rooij et al, Phys. Rev. B 104, L180506 (2021)



Quasiparticle number and lifetime are disconnected

42De Rooij et al, Phys. Rev. B 104, L180506 (2021)

Membrane has 2 effects:

Much better R => high energy phonons (~E_D)

Much enhanced quasiparticle lifetime => >2Δ phonons



Quasiparticle number and lifetime are disconnected

43De Rooij et al, Phys. Rev. B 104, L180506 (2021)



Quasiparticle number and lifetime are disconnected

44De Rooij et al, Phys. Rev. B 104, L180506 (2021)



Blessings of this physics

Without strong noise reduction at low temperatures, we could not reach the high 
signal/noise
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So if Aluminium is ideal, why anything else?
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Compact pixel needs high kinetic inductance

Absorption of radiation into the inductor



Hybrid device with NbTiN and β-Ta
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Phys. Rev. Applied 19, 034007 (2023)

Robust, insensitive NbTiN (Tc ~15 K) 
circuitry and capacitor

Sensitive β-Ta inductor, Tc ~ 1 K (150 μeV)

Pixels are 150x150 um

Also shown 3.8 um single photon detection



Challenge

R = 50

+



Known problems with disordered MKIDs
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TiN devices show hardly any response

Appl. Phys. Lett. 105, 192601 (2014)

TiN devices with variying disorder all 
have power law lifetime

IEEE Trans. Superc. 23, 7500404 (2013) 



β-Ta

50

Ls (pH)     0.1-1     ~100 

Note: higher Ls is undesirable, because 
- qp-response becomes very non-linear
- Mirowave non-linearity too strong

Challenge is not sensitivity alone, but accuracy 
for a 1-3 eV signal



Quasiparticle dynamics in disordered superconductors
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Worst possible pules shape!

Thermal fluctuations Non-equilibrium



Quasiparticle recombination in disordered superconductors
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Quasiparticle recombination in disordered superconductors
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- Responsivity for both pulse and noise are consistent with QP number fluctuations, not 
with scattering

- Noise reduction also in T-dependent regime, lifetime does not scale with Nqp, scattering?
- Noise level consistent with thermal quasiparticle density outside saturation regime.
- NO effect of phonon trapping in T-dependent regime!

Reizer, Sergeyev, Zh. Eksp. Teor. Fiz. 90, 1056 (1986)



Quasiparticle recombination in disordered superconductors

?? What is ‘the’ microscopic mechanism ??

• First trapping/localisation, loss of energy by a low-E phonon
• Recombination of trapped/localised qp’s (or 1 trapped, 1 free), <2Δ phonon

• Generation of qps, using >2Δ phonon

54

Trapped quasiparticles

<2Δ phonons>2Δ

Theory + experimental ideas needed!
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Detection process, our understanding Al vs anything else

Photon is absorbed, E>>Δ

Photon energy => quasiparticles

Aluminium β-Ta, TiN, etc

How do quasiparticles spread

How does this lead to a 
(macroscopic) microwave response

How do quasiparticles recombine

Very sensitive devices



Detection process, our understanding Al vs anything else
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Photon is absorbed, E>>Δ

Photon energy => quasiparticles

Aluminium β-Ta, TiN, etc

How do quasiparticles spread

How does this lead to a 
(macroscopic) microwave response

How do quasiparticles recombine

✅

✅ ✅

✅

✅

✅

✅❓

Very sensitive devices✅

✅❓

❓❓

❓❓

❓❓✖❓❓

Disclaimer: ✅ means we have demonstrated/understand it, not that it is easy



Localised quasiparticles => microscopic response? 

STM proposal: local injection of quasiparticles, microwave resonator readout
- Couple local non-equilibrium excitation to resonator response
- Needs to be done at MKID friendly temperatures ~100 mK, to be sensitive enough
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Microwave readout
Local qp injection
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Aluminium MKIDs
Amazing sensitivity, understood physics

Disordered MKIDs
Poor sensitivity, amazing physics

673 nm

653 nm

R = 50



extra
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‘Membrane-less’ phonon trapping
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Three ways to trap phonons:
• Geometrical – membrane
• Acoustical – phonon reflection from acoustic mismatch (Snell’s law for sound)
• Block available phonon states – materials with different Debye energy

Zobrist et al. arXiv:2204.13669



‘Membrane-less’ phonon trapping
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Three ways to trap phonons:
• Geometrical – membrane
• Acoustical – phonon reflection from acoustic mismatch (Snell’s law for sound)
• Block available phonon states – materials with different Debye energy

Zobrist et al. arXiv:2204.13669



Pair breaking efficiency = energy from photon going into qps

• Efficiency = 1 at 2Δ and for high energies depends on phonon trapping, typically 
0.3-0.6

63Appl. Phys. Lett. 106,  252602  (2015)



Photon noise

Fluctuations in the photon arrival rate
QP-lifetime from noise scales with sqrt(P) as expected



Noise levels

Optical Power Temperature


