Energy-resolved single photon counting in MKIDs with disordered superconductors

Outline

- Why energy resolving detectors for visible/near-infrared/mid-infrared?
- Working principle based on Aluminium detectors
 - Measurement and pulse analysis
 - Energy resolution limits
- Quasiparticle dynamics in MKIDs
 - Equilibrium and non-equilibrium dynamics
 - Role of phonons and phonon-trapping
 - Quasiparticle trapping
- MKIDs with disordered superconductors
- Quasiparticle dynamics in a disordered superconductor
- Open questions (some of them)

Characterizing Earth-like exoplanets with MKIDs

Integral Field Units

Single photon color resolution without dark counts or read noise

IR single photon detectors

Modular detector arrays for mid-IR interferometer outputs (LIFE)

Chromatic wavefront sensors

Real time photon counting with microsecond arrival timing and color information

Breath analysis: a spectrum of the planet's light

- 10^{10} larger signal from star than planet => null the star
- Still only <1 photon/second from planet
- Detector required with zero noise and R~100

Light from telescope Wavefront sensing Distorted Wavefront errors wavefront Deformable mirror Are chromatic Change quickly (~ ms) Need a guide star/source • Beam splitter which can be faint Controller Pyramid **Corrected wavefront** Wavefront sensing can be improved by a detector which is: Read out real time Color resolving

• Photon counting

Focal plane

Detector

Semiconducting vs superconducting detector

Semiconductor: bandgap $\sim 1 \text{ eV} => 1 \text{ electron per photon}$ Superconductor: gap < 1 meV => 1000's of 'electrons' per photon

Semiconducting vs superconducting detector

Semiconductor: bandgap ~1 eV => 1 electron per photon Superconductor: gap <1 meV => 1000's of electrons per photon

Main advantages:

- Colour information preserved spectroscopy
- No dark-current and no read-noise

Other useful properties:

- Real time readout of the pixels (timing information)
- Can be used for any wavelength above gap frequency

MKIDs, 2 main flavours

Distributed (CPW) resonator with antenna for far-infrared

Lumped element resonator.

2 possibilities for inductor:

- Smaller than wavelength (THz, sub-mm)
- (much) larger than wavelength (visible, near-IR)

Design: Kevin Kouwenhoven

MKIDs – operation principle

Microwave Kinetic Inductance Detector

MKIDs – operation principle

Microwave Kinetic Inductance Detector

Day et al. Nature 2003

Responsitivity to quasiparticles

$$\frac{\sigma_1}{\sigma_N} = \frac{2}{\hbar\omega} \int_{\Delta}^{\infty} [f(E) - f(E + \hbar\omega)] g_1(E) dE + \frac{1}{\hbar\omega} \int_{\min(\Delta - \hbar\omega, -\Delta)}^{-\Delta} [1 - 2f(E + \hbar\omega)] g_1(E) dE \frac{\sigma_2}{\sigma_N} = \frac{1}{\hbar\omega} \int_{\max(\Delta - \hbar\omega, -\Delta)}^{\Delta} [1 - 2f(E + \hbar\omega)] g_2(E) dE$$

$$\frac{dA}{dN_{qp}} = -\frac{\alpha_k \beta Q}{|\sigma| V} \frac{d\sigma_1}{dn_{qp}},$$
$$\frac{d\theta}{dN_{qp}} = -\frac{\alpha_k \beta Q}{|\sigma| V} \frac{d\sigma_2}{dn_{qp}},$$

MKID detector – sensitivity in power or in photon energy

Background + source

MKID detector – sensitivity in power or in photon energy

Far-infrared/sub-mm

- Low photon energy
- Many photons / time
- Power detection = change in average signal
- Sensitivity => detect tiny amount of power

Visible/near-infrared

- High photon energy
- Less photons / time
- Photon detection = Pulse for every single photon
- Pulse height => photon energy
- Sensitivity => detect small changes on top of a large pulse

MKID detector – colour information

- Energy resolution => zero dark current and read noise
- Pulse decay time: quasiparticle recombination time (~100 us)
- Pulse rise time: resonator ring-time $\tau = -$

$$\frac{z}{\pi f_{res}}$$

Multiplexed readout

VIS/NIR MKID instruments

- Wavefront sensing with colour sensitivity
- Fringe tracking (on faint sources)
- Spectroscopy
- Time-dependency
- Fluorescence problems in biophysics

More information: DARKNESS: Meeker et al, PASP 130 065001 (2018), <u>arXiv:1803.10420</u> MEC: Walter et al, PASP 132, 125005 (2020), <u>arXiv:2010.12620</u> Resolving power / energy resolution

Resolving power / energy resolution

How do we get from single photon hits to a spectrum?

- How do we measure R?
- What limits R?
- How do we overcome these limits?

How do we measure energy resolution?

- Hybrid NbTiN/AI MKID, with small AI volume as sensitive element
- This is not an efficient detector, but very sensitive

Setup – fiber or window illumination

Commercial dilution refrigerator, T>18 mK, typically 100-120 mK for MKIDs. Interior engineered and produced at SRON.

Time trace of KID response with continuous 673 nm illumination

Pulse analysis

Note: we plot PSDs here where optimal filter uses FTs

Energy resolution of AI KIDs on sapphire

What can limit the energy resolution in MKIDs?

Signal / noise

- Volume (low)
- Q-factor (high)
- Kinetic inductance (high)
- Efficiency of creating quasiparticles from photon energy

Signal / noise

- Amplifier
- Dielectric two-level-systems
- Generation-recombination of quasiparticles

Power spectral density (dBc/Hz

Role of phonons

- Convert 1-3 eV excitation into few thousand ~0.2 meV quasiparticle excitations
- Electron-phonon interaction
- Hot phonon loss
- Fano statistics in best case

Fano limit

- Statistical limit on how many quasiparticles are created from same photon energy
- Lower gap is the only tunable parameter

How do we know which mechanism is limiting?

Resolving power AI MKID on substrate

Phonon recycling with membrane

50 nm Alumunium film on 110 nm SiN membrane

Factor >7 better trapping than substrate.

Trap phonons

- 50 nm Al film
- 110 nm SiN membrane with 2.2 micron Al strip aspect ratio
- Geometric retrapping model, factor ~7 longer phonon dwell time

Measured histogram resolution substrate - membrane

Want to know more?: Physical Review Applied 16, 034051 (2021)

Proof: we can resolve close spectral lines

Combination of laser line and a monochromator Best measured resolving power (at 673 nm)

Very similar AI device is the most sensitive far-infrared MKID

Astronomy&Astrophysics 665, A17 (2022)

Very similar AI device is the most sensitive far-infrared MKID

Quasiparticle dynamics probed with MKIDs

- Generation and recombination of quasiparticles
- Equilibrium (steady state) vs non-equilibrium
- Strong vs weak phonon trapping (membranes)

Quasiparticle dynamics

Simple picture

- Nqp and lifetime are connected
- Saturation = excess quasiparticles

Phys. Rev. Lett. 106, 167004 (2011) Nature Communications 5, 3130 (2014)

Kaplan et al. Phys. Rev. B 14, 4854–487 (1976) Wilson, Prober, Phys. Rev. B. 69, 094524 (2004)

Quasiparticle number and lifetime are disconnected, still Alu

More sensitive device than before, less excess quasiparticles

De Rooij et al, Phys. Rev. B 104, L180506 (2021)

Quasiparticle number and lifetime are disconnected

De Rooij et al, Phys. Rev. B 104, L180506 (2021)

Quasiparticle number and lifetime are disconnected

De Rooij et al, Phys. Rev. B 104, L180506 (2021)

Quasiparticle number and lifetime are disconnected

De Rooij et al, Phys. Rev. B 104, L180506 (2021)

De Rooij et al, Phys. Rev. B 104, L180506 (2021)

Blessings of this physics

Without strong noise reduction at low temperatures, we could not reach the high signal/noise

So if Aluminium is ideal, why anything else?

Compact pixel needs high kinetic inductance

Absorption of radiation into the inductor

Hybrid device with NbTiN and β -Ta

Robust, insensitive NbTiN (Tc ~15 K) circuitry and capacitor

Sensitive β -Ta inductor, Tc ~ 1 K (150 μ eV)

Pixels are 150x150 um

Phys. Rev. Applied 19, 034007 (2023)

Also shown 3.8 um single photon detection

Challenge

Known problems with disordered MKIDs

TiN devices show hardly any response

IEEE Trans. Superc. 23, 7500404 (2013)

Appl. Phys. Lett. 105, 192601 (2014)

β-Τα

	A1	6 To
		p- 1a
d (nm)	50	40
$T_{c}(K)$	1.26	0.87
$ \rho_N (\mu \Omega cm) $	1.6	206
l (nm)	25	0.11
l/ξ_0	0.016	4.5e-5
$k_F l$	434	2.6
$q_{ph}(2\Delta)l$	3.9	0.023
$ au_0(\mu s)$	0.44	8.0
L _s (pH)	0.1-1	~100

Note: higher L_s is undesirable, because

- qp-response becomes very non-linear
- Mirowave non-linearity too strong

Challenge is not sensitivity alone, but accuracy for a 1-3 eV signal

Quasiparticle dynamics in disordered superconductors

Quasiparticle recombination in disordered superconductors

Quasiparticle recombination in disordered superconductors

- Responsivity for both pulse and noise are consistent with QP number fluctuations, not with scattering
- Noise reduction also in T-dependent regime, lifetime does not scale with Nqp, scattering?
- Noise level consistent with thermal quasiparticle density outside saturation regime.
- NO effect of phonon trapping in T-dependent regime!

Reizer, Sergeyev, Zh. Eksp. Teor. Fiz. 90, 1056 (1986)

Quasiparticle recombination in disordered superconductors

?? What is 'the' microscopic mechanism ??

- First trapping/localisation, loss of energy by a low-E phonon
- Recombination of trapped/localised qp's (or 1 trapped, 1 free), <2Δ phonon
- Generation of qps, using $>2\Delta$ phonon

Detection process, our understanding AI vs anything else

Aluminium

 β -Ta, TiN, etc

Very sensitive devices

Detection process, our understanding AI vs anything else

Disclaimer: V means we have demonstrated/understand it, not that it is easy

Localised quasiparticles => microscopic response?

STM proposal: local injection of quasiparticles, microwave resonator readout

- Couple local non-equilibrium excitation to resonator response
- Needs to be done at MKID friendly temperatures ~100 mK, to be sensitive enough

Local qp injection

Aluminium MKIDs Amazing sensitivity, understood physics

Disordered MKIDs

Poor sensitivity, amazing physics

extra

'Membrane-less' phonon trapping

Three ways to trap phonons:

- Geometrical membrane
- Acoustical phonon reflection from acoustic mismatch (Snell's law for sound)
- Block available phonon states materials with different Debye energy

Zobrist et al. arXiv:2204.13669

'Membrane-less' phonon trapping

Three ways to trap phonons:

- Geometrical membrane
- Acoustical phonon reflection from acoustic mismatch (Snell's law for sound)
- Block available phonon states materials with different Debye energy

Zobrist et al. arXiv:2204.13669

Pair breaking efficiency = energy from photon going into qps

• Efficiency = 1 at 2Δ and for high energies depends on phonon trapping, typically 0.3-0.6

Appl. Phys. Lett. 106, 252602 (2015)

Photon noise

Fluctuations in the photon arrival rate QP-lifetime from noise scales with sqrt(P) as expected

Noise levels

