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Insulating trend above Tc
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[0] T. Charpentier et al, to be published.

Experimental facts:

1. Activation law in normal state

2. No semiclassical limit

3. Tc strongly depends on disorder =>                  
no Anderson theorem (in agreement with 2)

Colors: 
various 
disorders



Anderson insulator 101
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[1] Courtesy of Vladimir Kravtsov; see also B.Sacépé, Nat. Phys. 2020

● Localized single-particle states
● No diffusion, insulating behavior
● Fractal wave functions

Lattice 
constant

Numerics: fractal wave function close 
to delocalization [1]

Equipotential lines
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No quasiparticle excitations

[2] B.Sacépé et al, Nature Physics 2011
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Temperature

Determined 
from resistance

Coherence peak height is a 
proxy to local “order parameter”Hard gap

even above Tc, 
Not order parameter

∝ single-particle DoS



Inhomogeneous superconducting state
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[2] B.Sacépé et al, Nature Physics 2011
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Inhomogeneous superconducting state
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[2] B.Sacépé et al, Nature Physics 2011
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● Not a Gaussian
● Broad distribution



Theoretical explanation of experiments [3]
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T < Tc: Superconductor
● Cooper pairs delocalize due to 

attraction
● Global phase coherence
● Quasiparticles are still gapped

T > Tc: not a metal
● Preformed cooper pairs
● Localized in single-particles state
● Large binding energy, 

quasiparticles are gapped
● No phase coherence

[3] M.V. Feigel'man et al, Annals of Phys. 2010

Colors: 
various 
disorders
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Temperature dependence
of the superfluid stiffness [0]

[0] T. Charpentier et al, to be published.

Experimental facts:
1. Dependence is not exponential.

2. Power law (dashed lines) describes 
the low-T data better.
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Temperature dependence
of the superfluid stiffness [0]

[0] T. Charpentier et al, to be published.

Experimental facts:
1. Dependence is not exponential.

2. Power law (dashed lines) describes 
the low-T data better.

Implications:
● Excitation DoS is nonzero,

● but those are not quasiparticles.

What excitations suppress 𝛳?



Model Hamiltonian
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Relevant range of parameters [5]
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Homogeneous state, 
exponential temp. 
dependencies

1st-order 
transition?

Disorder 
strengthSIT

Coulomb 
glass?

Extremely inhomogeneous 
superconducting state, temp. 

dependencies - ?

Inhomogeneous state, 
power-law temperature 
dependencies

We are here

… and nor here … … neither here.

[5] A.V. Khvalyuk and M.V. Feigel'man, PRB 2021



Cooper pairs in localized single-particle 
states [3,4]
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Random energies,
DoS 𝜈(𝜉), scale EF

[3] M.V. Feigel'man et al, Annals of Phys. 2010; [4] M.V. Feigel’man and L.B. Ioffe, PRL 2018

i

No quasiparticles:

We throw away part of the 
Hilbert space with single 
occupancy numbers

Index of localized 
single-particle state



Cooper pairs in localized single-particle 
states [3,4]
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[3] M.V. Feigel'man et al, Annals of Phys. 2010; [4] M.V. Feigel’man and L.B. Ioffe, PRL 2018

Index of localized 
single-particle state

Random energies,
DoS 𝜈(𝜉), scale EF

Pseudospin operators
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Hopping of Cooper pairs in localized single-particle 
states [3,4]

[3] M.V. Feigel'man et al, Annals of Phys. 2010; [4] M.V. Feigel’man and L.B. Ioffe, PRL 2018

Phonon-induced 
short-range interaction

Energy dependence 
at the scale of 𝜔D

Wave function overlap
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Hopping of 

Phonon-induced 
short-range interaction

Cooper pairs in localized single-particle 
states [3,4]

Superconductivity:

[3] M.V. Feigel'man et al, Annals of Phys. 2010; [4] M.V. Feigel’man and L.B. Ioffe, PRL 2018

Energy dependence 
at the scale of 𝜔D

Position-dependent!
Wave function overlap
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Cooper attraction matrix elements:

Approximation for the matrix elements [3,4]

[3] M.V. Feigel'man et al, Annals of Phys. 2010; [4] M.V. Feigel’man and L.B. Ioffe, PRL 2018

Single-particle wave functions

● Decay with distance rij
● Fluctuate strongly
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Simplest model:
● Neighbors chosen randomly in the 

localization volume
● Constant number of neighbors K + 1 

Cooper attraction matrix elements:

Localization 
volume

Dimensionless Cooper 
coupling constant

Approximation for the matrix elements [3,4]

[3] M.V. Feigel'man et al, Annals of Phys. 2010; [4] M.V. Feigel’man and L.B. Ioffe, PRL 2018
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Cooper attraction matrix elements:

Localization 
volume

Main feature: locally tree-like structure of Jij
notion of a graph embedded in real space

Approximation for the matrix elements [3,4]

[3] M.V. Feigel'man et al, Annals of Phys. 2010; [4] M.V. Feigel’man and L.B. Ioffe, PRL 2018



Embedding of a locally tree-like 
structure of  the matrix elements
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r = 1

Localization 
volume

Topology:

Real space:
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r = 1 r = 2

Localization 
volume

Topology:

Real space:

This we call the 
(portion of) 
interaction graph

Embedding of a locally tree-like 
structure of  the matrix elements
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Real distance grows 
diffusively with r

Volume grows as some 
power of r

r = 1 r = 2 r = 3 r = 4

Localization 
volume

Topology:

Real space:

Number of neighbors 
grows exponentially with r

Loops condense

Embedding of a locally tree-like 
structure of  the matrix elements



Superconducting
Scale of energies:

Universal* and nontrivial distrib. 
of the pairing ampl. → 

Dimensionless 
disorder strength
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[5] A.V. Khvalyuk and M.V. Feigel'man, PRB 2021

Choice of units:
Distance EnergyA bit of theory: distribution of 

pairing amplitude [5]

● Broad distribution
● Result of  nonlinearity of equations
● Most features model-independent



Superconducting
Scale of energies:

Universal* and nontrivial distrib. 
of the pairing ampl. → 

Dimensionless 
disorder strength
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[5] A.V. Khvalyuk and M.V. Feigel'man, PRB 2021;   [2] B.Sacépé et al, Nature Physics 2011

Choice of units:
Distance EnergyA bit of theory: distribution of 

pairing amplitude [5]

● Broad distribution
● Result of  nonlinearity of equations
● Most features model-independent

TODO: insert exp pic:
Statistics from 
spatially resolved 
STM [2]



A bit of theory: distribution of 
pairing amplitude [5]
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[5] A.V. Khvalyuk and M.V. Feigel'man, PRB 2021;

Choice of units:
Distance Energy

Superconducting
Scale of energies:

Universal* and nontrivial distrib. 
of the pairing ampl. 

Dimensionless 
disorder strength

This work
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Choice of units:
Distance EnergyA bit of theory: distribution of 

pairing amplitude [5]
Superconducting
Scale of energies:

Universal* and nontrivial distrib. 
of the pairing ampl. 

Dimensionless 
disorder strength

No direct connection between 𝛥 
and physical observables

What 𝛥 one should even use?
What is normal conductivity for an insulator?



Superfluid response of a 
disordered superconductor
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Macroscopic superfluid stiffness
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Boundary has 
the area S

Sample of length L

Total supercurrent 

P
h

ase = 0P
h

as
e 
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Macroscopic superfluid stiffness
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Boundary has 
the area S

Sample of length L

Total supercurrent 

P
h

ase = 0P
h

as
e 

= 
𝜑

𝜑i

System is 
inhomogeneous

Phases 𝜑i adjusted 
for charge conserv.



Macroscopic superfluid stiffness
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Boundary has 
the area S

Sample of length L

Total supercurrent 

P
h

ase = 0P
h

as
e 

= 
𝜑

𝜑i

System is 
inhomogeneous

Phases 𝜑i adjusted 
for charge conserv.

Formal analogy: 
network of resistors:

Potentials adjusted 
for charge conserv.



Macroscopic superfluid stiffness
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Boundary has 
the area S

Sample of length L

Total supercurrent 

P
h

ase = 0P
h

as
e 

= 
𝜑

𝜑i

System is 
inhomogeneous

Phases 𝜑i adjusted 
for charge conserv.

Formal analogy: 
network of resistors:

Potentials adjusted 
for charge conserv.

Discrete local Ohm’s 
law

Kirchoff's law



Macroscopic superfluid stiffness
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Boundary has 
the area S

Sample of length L

Total supercurrent 

P
h

ase = 0P
h

as
e 

= 
𝜑

Qij are random (determined by microscopics),
the “topology” of the network is random,
the task is still nontrivial!

Note: just an illustration so far,
derivation: extra slides.



“Solving” the problem on the graph

34
[7] A.M. Dykhne, JETP 1970

Kind of anticipated from [7]
(2D disordered conductor)

Numerics:
T-indep.

Sampled from 
microscopic 
theory

def



“Solving” the problem on the graph
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Numerics:
T-indep.

Disorder 
average

Status: approximate law, 
verified numerically

Q: how about 2D\3D?
A: did not test, but would not expect qualitative difference.

Q: can we derive the law for the graph?
A: there’re ideas, it’s a WIP.

Wanted: the statistics of Qij 
from the Hamiltonian



“Solving” the problem on the graph
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Numerics:
T-indep.

Disorder 
average

Status: approximate law, 
verified numerically

Q: how about 2D\3D?
A: did not test, but would not expect qualitative difference.

Q: can we derive the law for the graph?
A: there’re ideas, it’s a WIP.

Wanted: the statistics of Qij 
from the Hamiltonian

Belief propagation on a tree, statistics of the 
order parameter, analytical solution … skipping



Results: theoretical
low-T behavior of

the superfluid stiffness
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BCS-like behavior for weak disorder:

38

Exponential law:

Dimensionless 
disorder strength

SITWeak
disorder

Very strong 
disorder
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Results for strong disorder

Observation:
Looks like power law, 
similar to experiment
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Dimensionless 
disorder strength

Disorder

Weak
disorder

SIT

Very
Strong 
disorder
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Results for strong disorder



One more peculiar thing:
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For all highlighted points:

We can estimate the change 
in 𝛳 from that of 𝛥

[8] M.V. Feigel’man and L.B. Ioffe, PRB 2015

Maybe not all that surprising:

Ref. [8]

Perturb. 
estim.
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K = 20,
𝜅 = 10,
𝜆 = 0.124

Analytical results for strong disorder

[5] A.V. Khvalyuk and M.V. Feigel'man, PRB 2021

Roughly speaking,
From T=0

Delivered by statistics of 
extremely low 𝛥



Conclusions
05



Recap:

44

Motivation: 
recent 
measurements

Model: tree-like 
pseudospin 
Hamiltonian

Microscopic 
maxwell equations Ohm-like law, 

solution: Dykhne-like 
law (numerically)

Numerical answer 
of superfluid 
density 𝛳(T)

Numerical 
connection between 
𝛳 and〈𝛥〉  

Analytical answer 
for 𝛳(T)



Recap:
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Motivation: 
recent 
measurements

Model: tree-like 
pseudospin 
Hamiltonian

Microscopic 
maxwell equations Ohm-like law, 

solution: Dykhne-like 
law (numerically)

Belief propagation, 
neglect quantum 
fluctuations

Numerical answer 
of superfluid 
density 𝛳(T)

Analytical statistics 
of the order 
parameter 𝛥 

Numerical 
connection between 
𝛳 and〈𝛥〉  

What are the 
excitations?

Microscopic 
response identities

Analytical answer 
for 𝛳(T)



Our findings
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At moderately low temperatures,
The superfluid stiffness exhibits 
power-law-like behavior

The exact shape is dictated by the 
extreme value statistics of the 
order parameter

The character of the behavior 
depends on disorder and 
certain microscopics
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