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Insulating trend above T
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[0] T. Charpentier et al, to be published.

Experimental facts:

1. Activation law in normal state

Ro(T) = Ryexp {~T1/T}, T > T,
2. No semiclassical limit

4e? 1
= > 1
p o< 2

3. T_strongly depends on disorder =>
Nno Anderson theorem (in agreement with 2)




Anderson insulator 101

Numerics: fractal wave function close (2) §loc
to delocalization [1] PN
] 2
) X
. Lattice
constant

e Localized single-particle states
e No diffusion, insulating behavior
e Fractal wave functions

[1] Courtesy of Vladimir Kravtsov; see also B.Sacépé, Nat. Phys. 2020




No quasiparticle excitations

1.5

Coherence peak height is a

Hard gap L~ proxy to local “order parameter”

even above T,
Not order parameter

e (0.01A
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[2] B.Sacépé et al, Nature Physics 2011




Inhomogeneous superconducting state
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[2] B.Sacépé et al, Nature Physics 2011
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Statistics from spatially
resolved STM [2]
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Inhomogeneous superconducting state

[2] B.Sacépé et al, Nature Physics 2011
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Statistics from spatially
resolved STM [2]

e Not a Gaussian
e Broad distribution

0.0 0.5

Coherence peak height, arb. units




Theoretical explanation of experiments [3]

25
T <T_ Superconductor \/ Colprs: T>T_ not a metal
e Cooper pairs delocalize due to 5] various e Preformed cooper pairs
attraction disorders e Localized in single-particles state
e Global phase coherence e Large binding energy,
e Quasiparticles are still gapped 15 quasiparticles are gapped
e No phase coherence
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[3] M.V. Feigel'man et al, Annals of Phys. 2010




Temperature dependence
of the superfluid stiffness [O]

Experimental facts:

1. Dependence is not exponential. M

2. Power law (dashed lines) describesg (1) _ g (0

the low-T data better. O (T/To)’

Relative of shift of 6, %o

Temperature (K)

[0] T. Charpentier et al, to be published.
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Temperature dependence
of the superfluid stiffness [O]

Experimental facts:

1. Dependence is not exponential. M

2. Power law (dashed lines) describesg (1) _ g (0

2 b
o) the low-T data better. oy~ /)
=
=
s .
] H H °
£ Impllcat!on§. . e _/dey(e) o—€/T
g e Excitation DoS is nonzero, S)

0

: e butthose are not quasiparticles. ‘A\/L
0 0.5 1 oo

Temperature (K)
[0] T. Charpentier et al, to be published. What excitations suppress 9? "\ _/}
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Model Hamiltonian
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Relevant range of parameters [5]

Disorder
SIT strength
Ist-order
Fkxnogeﬁeoussuﬁe, Inhomogeneous state, transition?
exponential temp. power-law temperature _
dependencies dependencies Extremely innomogeneous Coulomb
superconducting state, temp. glass?

dependencies - ?

We are here

...and nor here ... ... heither here.

[5] AV. Khvalyuk and M.V. Feigel'man, PRB 2021

13



Cooper pairs in localized single-particle
states |3.,4|

H = _Z Z gia;'ro-aia

ioo=T,1

No quasiparticles:
Index of localized

Z al_a;, |state) = {0 or 2} |state)
Random energies, =11
single-particle state DoS v(§), scale E. 7

We throw away part of the
Hilbert space with single

OoCCcupancy numbers
[3] M.V. Feigel'man et al, Annals of Phys. 2010; [4] M.V. Feigel'man and L.B. loffe, PRL 2018
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Cooper pairs in localized single-particle
states |3.,4|

,i‘
io Qio

a
_ z
H=-) 285;
/ Pseudospin operators

. z 1 E T
Index of localized Random energies, SZ' = 5 a,,Aic — 1
single-particle state DoS v(§), scale E. o=1,1

St = aLajT, S, = aira;

7 (2

[3] MV. Feigel'man et al, Annals of Phys. 2010; [4] M.V. Feigel’'man and L.B. loffe, PRL 2018
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Hopping of Cooper pairs in localized single-particle
states |3.,4|

H = —Z%ﬁf‘Z‘Uﬁj (57557 +57S7)

d (25)

Energy dependence
at the scale of w, Wave function overlap

2 2 Phonon-in d
JZ] - D (’52 _ SJD /d?’r ’¢Z (T)| |¢J (TN gh::t-mn;”::temctiou

[3] MV. Feigel'man et al, Annals of Phys. 2010; [4] M.V. Feigel’'man and L.B. loffe, PRL 2018
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Hopping of Cooper pairs in localized single-particle
states |3.,4|

H = —Z%ﬁf‘Z‘Uﬁj (57557 +57S7)

i (35) Superconductivity:
A o (aysaps) = (S ) # 0
Energy dependence Position-dependent!
at the scale of w, Wave function overlap
2 2 Phonon-i induce
JZ] — D (’57’ o 53 D /d?’r ’¢7/ (fr)| |¢J ('f')‘ onrt—ran; iniemctiou

[3] MV. Feigel'man et al, Annals of Phys. 2010; [4] M.V. Feigel’'man and L.B. loffe, PRL 2018
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Approximation for the matrix elements [3,4]

Cooper attraction matrix elements:

0.03 . 0.01
1

TR N E I TR 1oV | | BRI R 2L (i TAaX 20 /d?’r i ()1 |83 ()

N WAL i e Decay with distance r;
L I 1B e Fluctuate strongly

Single-particle wave

[3] MV. Feigel'man et al, Annals of Phys. 2010; [4] M.V. Feigel’'man and L.B. loffe, PRL 2018
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Approximation for the matrix elements [3,4]

Cooper attraction matrix elements:

Dimensionless Cooper
Jsi coupling constant

_ _An n n
) Jo= S R | strong
Jij =

0 uweak”

Simplest model:
e Neighbors chosen randomly in the
localization volume

Localization ,
e Constant number of neighbors K + 1

volume

\
[ . SO

[3] MV. Feigel'man et al, Annals of Phys. 2010; [4] M.V. Feigel’'man and L.B. loffe, PRL 2018
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Approximation for the matrix elements [3,4]

Cooper attraction matrix elements:

Localization

volume notion of a graph embedded in real space

\
[ . SO

[3] MV. Feigel'man et al, Annals of Phys. 2010; [4] M.V. Feigel’'man and L.B. loffe, PRL 2018

Main feature: locally tree-like structure Of]ij

20



Embedding of a locally tree-like
structure of the matrix elements

Localization
volume

Real space:

1
—

r

Topology: ®
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Embedding of a locally tree-like
structure of the matrix elements

Localization

volume
Real space:
This we call the

r=1 r=2 (portion of)
interaction graph

Topology: ®
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Embedding of a locally tree-like
structure of the matrix elements

. . Real distance grows
Localization

diffusively with r
volume ST SN
\ / 3 % Volume grows as some
2 power of r
Real space: / \\J/)

r=1 r=2 r=3 r=4

TOpOlOgy: PS Number of neighbore

growe exponentially with r

Loops condence

23



A bit of theory: distribution of

pairing amplitude

Superconductl.ng Ag = 2¢=1/A
Scale of energies:

D.1men810nless k= M KA
disorder strength

Universal* and nontrivial distrib.
of the pairing ampl. —

e Broad distribution

Result of nonlinearity of equations

[}
Most features model-independent

[5] AV. Khvalyuk and M.V. Feigel'man, PRB 2021
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Choice of unite: 1), — 1’ 2VO =1
Dictance Energy

PDF Fy(y)

10" .
'k =5.0
I' \ == Numerics, § = 0.0
: \\ Numerics, § = 0.2
| 2\
I X N5 == Theory, § = 0.0
—1 [ ~
10 [T N Theory, 6 =02 |
| N
ll \\__;/" A == Assymptotic
| \\
| \\
| N\
2 : \ g
—2 [l
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A bit of theory: distribution of
B

pairing amplitude

Superconductl.ng Ag = 2¢=1/A
Scale of energies:

Dimensionless

. = \/KA
disorder strength h=AKRo

Universal* and nontrivial distrib.
of the pairing ampl. —

e Broad distribution
e Result of nonlinearity of equations
e Most features model-independent

[5] AV. Khvalyuk and M.V. Feigel'man, PRB 2021; [2] B.Sacépé et al, Nature Physics 2011

Choice of unite: 1), — 1’ 2VO =1
Dictance Energy

PDF Fy(y)

10°

107!

1072

30 Y

Statistics from
20l spatially resolved
STM [2]
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Choice of unite: 1), — 1, 2V0 =1

A bit of theory: distribution of Ditaes Enery
pairing amplitude [5]

Superconducting A — 9p-1/2
0=

Scale of energies: x = exp{1/22}) < exp{(1-eD/A} K

Dimensionless 5 = A/ KA : : >
disorder Stl‘ength o 0 Weak disorder Intermediate disorder, Strong disorder,

non-Gaussian profile, broad distribution, g7  Insulator
factorial large-value tails  fat large-value tails

Gaussian regime

Universal* and nontrivial distrib.

of the pairing ampl.
|<7 This work 4>|

[5] AV. Khvalyuk and M.V. Feigel'man, PRB 2021;
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Choice of unite: 1), — 1, 2V0 =1

A bit of theory: distribution of Ditaes Enery
pairing amplitude [5]

Superconductl.ng Ag = 2¢=1/A
Scale of energies:

Dimensionless

) k=MNKA
disorder strength /Ko
Universal* and nontrivial distrib.
of the pairing ampl.
No direct connection between A What A one chould even use?
and physica] observables What is normal conductivity for an insulator?

27
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Superfluid response of a
disordered superconductor
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Macroscopic superfluid stiffness

Sample of length (

S
. 2e I Total supercurrent
J =20 (ng B ?A> % I =2e0S5¢/L
o >

Boundary has
the area §

aseyd

0=

29



Macroscopic superfluid stiffness

j =20 (ng - 2—5A>

-@

Phase

Sample of length (

Boundary has o
Total supercurrent the area $ ?n:,y
= D
I =2e0S5¢/L ;
. @)
System is
iInhomogeneous

Phases ¢, adjusted
for charge conserv.

30



Macroscopic superfluid stiffness

j =20 (qu - 2—5A>

Formal analogy:

network of resistors:

Sample of length (

Potentials adjusted
for charge conserv.

S Boundary has o
'q') Total supercurrent the aren S ?n:,y
@ I =2e0S5¢/L ®
i I
o > o
System is
iInhomogeneous

Phases ¢, adjusted
for charge conserv.

31



Macroscopic superfluid stiffness

Sample of length (

Kirchoffe law < >
(
Z I’L—)j — 0 Diccerete local Ohm'e & 80«1«4{4}'}/ has U
jeoi . 3 o Total supercurrent the area S ?n:,y
<Ii—>j:%Qz‘j'(S0j_%) g IZQGGSQO/L (|D|
_ Pright — Pleft -
Z Ii—>j = 2e0 S% 2l _ @)
\ boundary
Formal analogy:
networki of reS|stc?rs. SysiE i
iInhomogeneous

Potentials adjusted
for charge conserv.

Phases ¢, adjusted
for charge conserv.
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Macroscopic superfluid stiffness

MNote: Just an illuctration co far,

derivation: extra clides.

Sample of length (

( 'Z'Iz'—m' =0 S
jEdI ) 'q') Total supercurrent
Lisj = 5:Qi5 - (@5 — @1) % I =2e©5¢p/L
S I = 2e@ G frisht—Plett = >
iy =
\ boundary ’ L

Boundary has
the area §

aseyd

0=

Qij are random (determined by microscopics),
the “topology” of the network is random,
the task is still nontrivial!
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“Solving” the problem on the graph

[
=]

- Numerics

[y
T —T

e
—
(@)
(=]
T

0.001}

Macroscopic response, units of A
o
o
p—
o

[
9

Linear fit y = ax

g

1077

0.001
Qtyp. units of Ag

[7] A.M. Dykhne, JETP 1970

N\

( Z Iz‘—>j =0
j€di
Iinyi = 5=Qij - (05 — i)

Z Iqj—>j — 26@ S‘PrightL—%Oleft

\ boundary

T-indep.
Numerics: / /

InO (1)~ A+ B In Qyp (1)

def ——
In Qtyp (T) =1In Qij —~ Sampled from

microscopic
theory

Kind of anticipated from [7]
(2D disordered conductor)
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“Solving” the problem on the graph

Status: approximate law,
verified numerically

Q: how about 2D\3D?
A: did not test, but would not expect qualitative difference.

Q: can we derive the law for the graph?
A: theree ideas, it'c a WIP.

Wanted: the statistics of Q..
. ; ij
from the Hamiltonian

T-indep.
Numerics: / /

InO (1)~ A+ B In Qyp (1)
In Qtyp (T) = M\

Disorder
average

35



“Solving” the problem on the graph

Status: approximate law,
verified numerically

Q: how about 2D\3D?
A: did not test, but would not expect qualitative difference.

Q: can we derive the law for the graph?

T-indep.
A: there've ideas, it'c a WIP. ! P

Numerics: / /
InO (1)~ A+ B In Qyp (1)

Wanted: the st.atist_ics of Q, In Qiyp (1) = In Q5 ~ Disorder
from the Hamiltonian average

Belief propagation on a tree, statistics of the
order parameter, analytical solution ... skipping

36



04

Results: theoretical
low-T behavior of
the superfluid stiffness
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BCS-like behavior for weak disorder:

Relative change in Qyp

=
[
)
=)

=
@)
—_
=)

0.001}

1073k

=

= (.25

Dimensionless
disorder strength

R = )\/KAO

r®
i e Numerics
" — Exp. fit, E, = 0.947 A
S . Power fit, b = 5.93
Exponential law:
0 Qtyp { 2F }
P — Aexp{——2 %, E,~ (A g
Qtyp T g < >
1. 08 06 0.5 04 035 03 0.25 0.2

Temperature, units of Ay

l —

Very strong SIT

Weak
@ disorder

disorder

In® (T') ~ A+ B In Qeyp (1)
In Qeyp (1) =In Q5
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Weak

-
-

Very

== SIT

\4

Disorder

Results for strong disorder

disorder

)
\

Strong
disorder

Relative charjge in Qqyp

\
\
\

o
|
o
=}

0.010}

0.001}

1T

K = )\/KAO Dimencionlese
disorder strength

o

Qtyp (T)

| Qtyp (0)

(TN
~ (%) -

70.10

0.50

Temperature, units of Agy

In® (T') ~ A+ B In Qeyp (1)
In Qeyp (1) =In Q5

Observation:
Looks like power law,
similar to experiment

Relative of shift of 6, %o

Temperature (K)
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Results for strong disorder

0.7t
oé: 0.6F
3.0 B p
—'3 0.5
O) 0.4F
kS 4l . eoiyn gy
o 2.5} 0302 4 6 10 12 1
= K
g
= ®
&
< 2.0
®
K =10
K=15 @
1:5% . . : . : ;
0 2 4 6 8 10 12 14
Dimensionless disorder strength «

In® (T') ~ A+ B In Qeyp (1)
In Qtyp (T) =In QU
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One more peculiar thing:

1;
o2
3 o4
< 0.100; s6 #
B o8 X Bt
é’b 012 & /
6 Jd
£ 0.010 e
= -
?2 ]
~
0.001}

0.05 0.10

..~ | Forall highlighted points:

0 (A) /(A)
5Qtyp/Qtyp

Maybe not all that curprising:

Temperature, units of Ay

[8] M.V. Feigel’'man and L.B. loffe, PRB 2015

=0.5x=0.05

Ref. [5] 0 () = 20 —p08)

| | ) (A
0.50 1 Perturb.  §Q,, O0AL, §(A)° Ay
ectim. Qtyp A%yp <A>2 &

We can estimate the change

in © from that of A

P
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Analytical results for strong disorder

Relative change in Qyp, (A)

05 In® (T') ~ A+ B In Qeyp (1)
e (change in Q4yp) / 2 In Quyp (1) = m
0.4 change in (A)
analytics for (A)
—— power—law fit to Qyp: o From T=0
0.3 b = 2.63, Ty = 0.54 ] .
Roughly speaking, /
f expi—A22 1 B2y 28
0.2 6@0(6<A>o<% / dw p{ \}”:_w;” “’}
2[el=A/B
0.1 Delivered by statistics of
extremely low A
il g il Theory applicability region 7
0.0 0.1 0.2 0.3 0.4 0.5
Temperature £ =20,
K =10,
A=012¢9

[5] AV. Khvalyuk and M.V. Feigel'man, PRB 2021
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Conclusions




Recap:

Motivation:
recent
Mmeasurements

Model: tree-like
pseudospin
Hamiltonian

Microscopic

maxwell equations “\_ Ohm-like law,

solution: Dykhne-like
law (numerically)

/

Numerical answer Numerical
of superfluid connection between

density O(T) 6 and{4)

/

Analytical answer
for 6(T)
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Recap:

Motivation:
recent
Mmeasurements

Model: tree-like
pseudospin
Hamiltonian

Microscopic

maxwell equations “\_ Ohm-like law,

solution: Dykhne-like
law (numerically)

/

Numerical answer Numerical
of superfluid connection between

density O(T) 6 and{4)

/

Analytical answer
for 6(T)
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Our findings

At moderately low temperatures,
The superfluid stiffness exhibits
power-law-like behavior

The character of the behavior
depends on disorder and
certain microscopics

The exact shape is dictated by the
extreme value statistics of the
order parameter

1F v :
" °
2 »
& 4
< 0.100% 6 -
A= o8 S
& 012
< o y
é 0.010% .,d‘ =
(‘2 5 & 06
3.0 3
0.001¢ N g 05
T 3 & 04
0.05 0.10 <
Temperature, units of Ag 2 25 03t fRey T
&
5]
g .
)
¢ 2.0
°
K =10
K =15 .
1.5
2 4 6 8 10 12 14

Relative change in Quyy,, (A)

o (change in Qi) /2

change in (A)
analytics for (A)

power—law fit to Qiyp: !
b = 2.63, Tp = 0.54 Iiee®

4

e

Theory applicability region
0.1 02 0.3 0.4

Temperature

Dimensionless disorder strength «
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