Temperature dependence of the Superfluid stiffness in strongly disordered superconductors

Anton Khvalyuk and Mikhail Feigelman

Contents of this talk

O1 Phenomenology and experimental motivation

O2 Model Hamiltonian

03

Superfluid response of disordered superconductor

O4 Results: low-T behavior of the superfluid stiffness

O1 Phenomenology and experimental motivation

Insulating trend above T_c

[0] T. Charpentier et al, to be published.

Experimental facts:

1. Activation law in normal state

 $R_{\Box}(T) = R_0 \exp\{-T_1/T\}, \ T > T_c$

2. No semiclassical limit

$$\frac{4e^2}{h}R_{\Box} \propto \frac{1}{k_F l} \gtrsim 1$$

3. T_c strongly depends on disorder => no Anderson theorem (in agreement with 2)

Anderson insulator 101

Numerics: fractal wave function close to delocalization [1]

- Localized single-particle states
- No diffusion, insulating behavior
- Fractal wave functions

[1] Courtesy of Vladimir Kravtsov; see also B.Sacépé, Nat. Phys. 2020

No quasiparticle excitations

[2] B.Sacépé et al, Nature Physics 2011

Inhomogeneous superconducting state

Inhomogeneous superconducting state

Theoretical explanation of experiments [3]

T < T_c: Superconductor

- Cooper pairs delocalize due to attraction
- Global phase coherence
- Quasiparticles are still gapped

T > T_c: not a metal

- Preformed cooper pairs
- Localized in single-particles state
- Large binding energy, quasiparticles are gapped
- No phase coherence

[3] M.V. Feigel'man et al, Annals of Phys. 2010

Temperature dependence of the superfluid stiffness [0]

Experimental facts:

1. Dependence is not exponential. $\Theta($

2. Power law (dashed lines) describes $\frac{\Theta(T) - \Theta(0)}{\Theta(0)} = -(T/T_0)^b$ the low-T data better.

[0] T. Charpentier et al, to be published.

Temperature dependence of the superfluid stiffness [0]

[0] T. Charpentier et al, to be published.

Experimental facts:

1. Dependence is not exponential. $\Theta(T) - \Theta(\theta)$

2. Power law (dashed lines) describes $\frac{\Theta(T) - \Theta(0)}{\Theta(0)} = -(T/T_0)^b$ the low-T data better.

Implications:

- Excitation DoS is nonzero,
- but those are not quasiparticles.

What excitations suppress θ ?

03

Model Hamiltonian

Relevant range of parameters [5]

[5] A.V. Khvalyuk and M.V. Feigel'man, PRB 2021

Cooper pairs in localized single-particle states [3,4]

Cooper pairs in localized single-particle states [3,4]

Hopping of Cooper pairs in localized single-particle states [3,4]

$$H = -\sum_{i} 2\xi_{i} S_{i}^{z} - \sum_{\langle ij \rangle} 4J_{ij} \left(S_{i}^{x} S_{j}^{x} + S_{i}^{y} S_{j}^{y} \right) -a_{i\uparrow}^{\dagger} a_{i\downarrow}^{\dagger} J_{ij} a_{j\downarrow} a_{j\uparrow}$$

Energy dependence at the scale of ω_D Wave function overlap $\begin{vmatrix} & & \\$

Hopping of Cooper pairs in localized single-particle states [3,4]

$$H = -\sum_{i} 2\xi_{i}S_{i}^{z} - \sum_{\langle ij \rangle} 4J_{ij} \left(S_{i}^{x}S_{j}^{x} + S_{i}^{y}S_{j}^{y} \right) -a_{i\uparrow}^{\dagger}a_{i\downarrow}^{\dagger}J_{ij}a_{j\downarrow}a_{j\uparrow}$$

Superconductivity:

 $\Delta_i \propto \langle a_{\downarrow i} a_{\uparrow i} \rangle = \left\langle S_i^- \right\rangle \neq 0$

Position-dependent!

Energy dependence
at the scale of
$$\omega_D$$
 Wave function overlap
 $\int J_{ij} = D\left(|\xi_i - \xi_j|\right) \int d^3 r |\psi_i(r)|^2 |\psi_j(r)|^2 Phonon-induced$
short-range interaction

Approximation for the matrix elements [3,4]

Cooper attraction matrix elements:

$$J_{ij} = D\left(\left|\xi_i - \xi_j\right|
ight) \int d^3 oldsymbol{r} \left|\psi_i(oldsymbol{r})
ight|^2 \left|\psi_j(oldsymbol{r})
ight|^2$$

- Decay with distance r_{ij} Fluctuate strongly
- •

Approximation for the matrix elements [3,4]

Cooper attraction matrix elements:

Dimensionless Cooper
coupling constant

$$J_{ij} = \begin{cases} J_0 = \frac{\lambda n}{2\nu_0 K}, & \text{"strong"} \\ 0 & \text{"weak"} \end{cases}$$
Simplest model:
• Neighbors chosen randomly in the
localization volume

• Constant number of neighbors K + 1

Approximation for the matrix elements [3,4]

Cooper attraction matrix elements:

$$J_{ij} = \begin{cases} J_0 = \frac{\lambda n}{2\nu_0 K}, & \text{"strong"} \\ 0 & \text{"weak"} \end{cases}$$

Main feature: locally tree-like structure of J_{ij} notion of a graph embedded in real space

Embedding of a locally tree-like structure of the matrix elements

Embedding of a locally tree-like structure of the matrix elements

This we call the (portion of) interaction graph

Embedding of a locally tree-like structure of the matrix elements

Choice of units: $n=1, \ 2
u_0=1$ Energy Distance

A bit of theory: distribution of pairing amplitude [5]

Superconducting Scale of energies:

$$\Delta_0 = 2e^{-1/\lambda}$$

Dimensionless $\kappa = \lambda / K \Delta_0$ disorder strength

Universal* and nontrivial distrib. of the pairing ampl. \rightarrow

- **Broad** distribution
- Result of **nonlinearity** of equations
- Most features model-independent

A bit of theory: distribution of pairing amplitude [5]

Superconducting Scale of energies:

$$\Delta_0 = 2e^{-1/2}$$

Dimensionless disorder strength $\kappa = \lambda/K\Delta_0$

Universal* and nontrivial distrib. of the pairing ampl. \rightarrow

- Broad distribution
- Result of **nonlinearity** of equations
- Most features model-independent

[5] A.V. Khvalyuk and M.V. Feigel'man, PRB 2021; [2] B.Sacépé et al, Nature Physics 2011

Choice of units: $n=1, \ 2\nu_0=1$ Distance Energy

Choice of units: $n=1, \ 2\nu_0=1$ Distance Energy

A bit of theory: distribution of pairing amplitude [5]

Superconducting Scale of energies: $\Delta_0 = 2e^{-1/\lambda}$

Dimensionless disorder strength $\kappa = \lambda/K\Delta_0$

Universal* and nontrivial distrib. of the pairing ampl.

Choice of units: $n=1, \ 2\nu_0=1$ Distance Energy

A bit of theory: distribution of pairing amplitude [5]

Superconducting
Scale of energies: Δ

 $\Delta_0 = 2e^{-1/\lambda}$

Dimensionless disorder strength $\kappa = \lambda/K\Delta_0$

Universal* and nontrivial distrib. of the pairing ampl.

No direct connection between Δ and physical observables

What Δ one should even use? What is normal conductivity for an insulator?

03

Superfluid response of a disordered superconductor

Note: just an illustration so far, derivation: extra slides.

Q_{ij} are random (determined by microscopics), the "topology" of the network is random, the task is still nontrivial!

"Solving" the problem on the graph

[7] A.M. Dykhne, JETP 1970

"Solving" the problem on the graph

Status: approximate law, verified numerically

Q: how about 2D\3D? A: did not test, but would not expect qualitative difference.

Q: can we derive the law for the graph? A: there're ideas, it's a WIP.

Wanted: the statistics of Q_{ij} from the Hamiltonian

Numerics: $In \Theta(T) \approx A + B \ln Q_{typ}(T)$ $\ln Q_{typ}(T) = \overline{\ln Q_{ij}} \sim Disorder average$

"Solving" the problem on the graph

Status: approximate law, verified numerically

Q: how about 2D\3D? A: did not test, but would not expect qualitative difference.

Q: can we derive the law for the graph? A: there're ideas, it's a WIP.

Wanted: the statistics of Q_{ij} from the Hamiltonian

Belief propagation on a <u>tree</u>, statistics of the order parameter, analytical solution ... **skipping**

Numerics:// $\ln \Theta (T) \approx A + B \ln Q_{typ} (T)$ $\ln Q_{typ} (T) = \overline{\ln Q_{ij}} \sim Disorder average$

$\mathbf{04}$ **Results: theoretical low-T** behavior of the superfluid stiffness

BCS-like behavior for weak disorder: $\kappa=0.25$

Results for strong disorder

 $\ln \Theta (T) \approx A + B \ln Q_{\text{typ}} (T)$ $\ln Q_{\text{typ}} (T) = \overline{\ln Q_{ij}}$

Observation: Looks like power law, similar to experiment

Results for strong disorder

One more peculiar thing:

For all highlighted points: $\frac{\delta \left< \Delta \right> / \left< \Delta \right>}{\delta Q_{\rm typ} / Q_{\rm typ}} = 0.5 \pm 0.05$

Maybe not all that surprising:

$$\begin{array}{ll} \textit{Ref. [8]} & \Theta \propto \langle \Delta \rangle^2 \Rightarrow \frac{\delta \Theta}{\Theta} = 2 \frac{\delta \left< \Delta \right>}{\left< \Delta \right>} \\ \textit{Perturb.} & \frac{\delta Q_{\mathrm{typ}}}{Q_{\mathrm{typ}}} \approx \frac{\delta \Delta_{\mathrm{typ}}^2}{\Delta_{\mathrm{typ}}^2} \approx \frac{\delta \left< \Delta \right>^2}{\left< \Delta \right>^2} \approx 2 \frac{\delta \left< \Delta \right>}{\left< \Delta \right>} \end{array}$$

We can estimate the change in Θ from that of Δ

[8] M.V. Feigel'man and L.B. loffe, PRB 2015

Analytical results for strong disorder

05 Conclusions

Recap:

Recap:

Our findings

At moderately low temperatures, The superfluid stiffness exhibits power-law-like behavior

The character of the behavior depends on disorder and certain microscopics

The exact shape is dictated by the extreme value statistics of the order parameter

References

[0] T. Charpentier et al, to be published

[1] B.Sacépé et al, Nat. Phys. 2020

[2] B.Sacépé et al, Nat. Phys. 2011

[3] M.V. Feigel'man et al, Annals of Phys. 2010

[4] M.V. Feigel'man and L.B. loffe, PRL 2018

[5] A.V. Khvalyuk and M.V. Feigel'man, PRB 2021

[6] M.V. Feigel'man et all, PRB 2010

[7] A.M. Dykhne, JETP 1970

[8] M.V. Feigel'man and L.B. loffe, PRB 2015

[9] J.S. Yedidia et al, Joint Conference on Artificial Intelligence, 2001

Thanks

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**,and infographics & images by **Freepik**